Cho tam giác ABC(AB<AC) có 2 đường trung tuyến là BDvà CE.Gọi M là trung điểm BE,và N là trung điểm CD.Gọi I là giao điểm của MN và BD,K là giao điểm của MN và CE
a)Chứng minh BCDE là hình thang
b)chứng minh I là trung điểm BD,K là trung điểm CE
c)Chứng minh MI=IK=KN
Xin lỗi vì hình không được chính xác cho lắm.
a) Dễ thấy DE là đường trung bình nên DE // BC => Tứ giác BCDE là hình thang
b) Dễ thấy MN là đường trung bình do đó MN // ED (và BC nữa nhưng ở đây ko cần:v)
Ta có MN // ED -> MI // ED (1) . Mà M là trung điểm BE(2) . Từ (1) và (2) có ngay I là trung điểm BD.
Chứng minh tương tự (bạn tự chứng minh nhá) ta cũng có K là trung điểm CE.
c) Từ câu b) ta suy ra MI là đường trung bình nên \(MI=\frac{1}{2}ED\)
Tương tự \(KN=\frac{1}{2}ED\). Bây giờ phải chứng minh \(IK=\frac{1}{2}ED\) là xong . Tuy nhiên mình chưa nghĩ ra.
Làm tiếp:
c)Dễ thấy MK là đường trung bình (do từ câu b thì K là trung điểm EC)
Do đó \(MK=\frac{1}{2}BC\Leftrightarrow MI+IK=\frac{1}{2}BC\)
\(\Rightarrow IK=\frac{1}{2}BC-MI=\frac{1}{2}BC-\frac{1}{2}ED=\frac{1}{2}ED\) (do \(ED=\frac{1}{2}BC\))
Từ đây ta có thể suy ra đpcm.