\(\dfrac 2 3 + \dfrac 2 9 + \dfrac 2 {27} + ... + \dfrac 2 {6561}\)
Làm cách TH nha! Thanks!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: A=1/3+1/9+1/27+...+1/6561
=1/3+1/3^2+1/3^3+...+1/3^8
=>3A=1+1/3+...+1/3^7
=>3A-A=1-1/3^8
=>\(2A=\dfrac{3^8-1}{3^8}\)
=>\(A=\dfrac{3^8-1}{2\cdot3^8}\)
Đặt \(S=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{6561}\)
\(3S=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{2187}\)
\(2S=\dfrac{2188}{2187}-\left(\dfrac{1}{27}+\dfrac{1}{6561}\right)\)
\(2S=\dfrac{2188}{2187}-\dfrac{244}{6561}\)
\(2S=\dfrac{4376}{6561}-\dfrac{244}{6561}\)
\(2S=\dfrac{4132}{6561}\)
\(S=\dfrac{2066}{6561}\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)
Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)
Lấy (4) trừ (3) ta có:
\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)
\(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}\right)^2-2.\dfrac{1}{3}.y^4+\left(y^4\right)^2=\left(\dfrac{1}{3}+y^4\right)^2\)
Cho mình sửa lại thành: \(\left(\dfrac{1}{3}-y^4\right)^2\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
Câu 1:
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
\(1,\Leftrightarrow\left(x+\dfrac{1}{3}\right)^2=\dfrac{4}{9}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{2}{3}\\x+\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\\ 2,=15:\left(\dfrac{2}{3}\right)^4\cdot\left(\dfrac{2}{3}\right)^6:\left(\dfrac{2}{3}\right)^9=15\cdot\left(\dfrac{2}{3}\right)^{-7}=15\cdot\dfrac{3^7}{2^7}=15\cdot\dfrac{2187}{128}=\dfrac{32805}{128}\)
Mình không nghĩ TH làm được bài này đâu nên mình làm cách THCS nha, dù sao đây cũng là toán lớp 6 mà!!!
Gọi tổng là A ta có :
\(A=\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+...+\frac{2}{6561}\)
\(A=\frac{2}{3^1}+\frac{2}{3^2}+\frac{2}{3^3}+...+\frac{2}{3^8}\)
\(3A=3.\left(\frac{2}{3^1}+\frac{2}{3^2}+\frac{2}{3^3}+...+\frac{2}{3^8}\right)\)
\(3A=\frac{2}{3^2}+\frac{2}{3^3}+\frac{2}{3^4}+...+\frac{2}{3^9}\)
\(3A-A=\left(\frac{2}{3^2}+\frac{2}{3^3}+\frac{2}{3^4}+...+\frac{2}{3^9}\right)-\left(\frac{2}{3^1}+\frac{2}{3^2}+\frac{2}{3^3}+...+\frac{2}{3^8}\right)\)
\(2A=\frac{2}{3^9}-\frac{2}{3^1}\)
\(A=\frac{\frac{2}{3^9}-\frac{2}{3^1}}{2}\)
Vậy,...
Nếu sai mong bạn thông cảm nha!!!