K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

nếu đề đúng

\(f'\left(x\right)=\frac{3}{2}x^2+m^2-4\)

\(f''\left(x\right)=3x\)

Để f(x) đạt cực đại tại x=1 <=> \(\hept{\begin{cases}f'\left(1\right)=0\\f''\left(1\right)< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{3}{2}+m^2-4=0\\3.1< 0\end{cases}}\)vô lí

Vậy ko tồn tại m

NV
2 tháng 8 2021

1.

\(y'=4x^3-4\left(m+1\right)x\)

\(y''=12x-4\left(m+1\right)\)

Hàm đạt cực đại tại x=1 khi: \(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m+1\right)=0\\12-4\left(m+1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m>2\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

2.

\(y'=4x^3-2\left(m+1\right)x\)

\(y''=12x^2-2\left(m+1\right)\)

Hàm đạt cực tiểu tại x=-1 khi:

\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2\left(m+1\right)=0\\12-2\left(m+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m< 5\end{matrix}\right.\) \(\Rightarrow m=1\)

NV
23 tháng 5 2021

a.

\(y'=x^2+2\left(m^2-1\right)x+2m-3\)

\(y''=2x+2\left(m^2-1\right)\)

Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)

Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài

b.

\(y'=x^2+2mx+3\)

\(y''=2x+2m\)

Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)

\(\Rightarrow m=2\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)

Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)

a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)

Thử lại: \(y'=2x^2-2x\)

\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$

Vậy $m=2$

b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)

\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)

\(\Leftrightarrow m=\frac{4}{3}\)

Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$

Vậy không tồn tại $m$ thỏa mãn.

c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.

Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt

Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)

d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$

Với ĐKXĐ như phần c, áp dụng hệ thức Viete:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)

Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)

\(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)

Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)

Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$