chứng tỏ rằng 5n+6/6n+7 là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯC(5n-4,6n-5)=d
Ta có: 5n-4 chia hết cho d=>6.(5n-4)=30n-24 chia hết cho d
6n-5 chia hết cho d=>5,(6n-5)=30n-25 chia hết cho d
=>30n-24-(30n-25) chia hết cho d
=>1 chia hết cho d
=>d=1
=>(5n-4,6n-5)=1
=>Phân số 5n-4/6n-5 là phân số tối giản.
=>ĐPCM
Gọi \(ƯCLN\left(5n+1;6n+1\right)=d\)
\(\Rightarrow\)\(5n+1⋮d\) và \(6n+1⋮d\)
\(\Rightarrow\)\(6\left(5n+1\right)⋮d\) và \(5\left(6n+1\right)⋮d\)
\(\Rightarrow\)\(30n+6⋮d\) và \(30n+5⋮d\)
\(\Rightarrow\)\(\left(30n+6\right)-\left(30n+5\right)⋮d\)
\(\Rightarrow\)\(30n+6-30n-5⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d=1\)
\(\Rightarrow\)\(5n+1\) và \(6n+1\) là hai số nguyên tố cùng nhau vì có ước chung lớn nhất là 1
Vậy \(A=\frac{5n+1}{6n+1}\) là phân số tối giản
Chúc bạn học tốt ~
Đặt d = ƯCLN(5n+1, 6n+1) thì
5n+1 chia hết cho d, 6n+1 chia hết cho d
=> 6(5n+1) - 5(6n+1) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1) = {1; -1} => d = 1
Vậy 5n+1/6n+1 tối giản với mọi STN n
Gọi d là UCLN của 5n+1 và 6n+1
\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)
Hay \(6\left(5n+1\right)⋮d\)và \(5\left(6n+1\right)⋮d\)
\(\Leftrightarrow30n+6⋮d\)và \(30n+5⋮d\)
\(\Rightarrow30n+6-\left(30n+5\right)⋮d\)
Hay \(1⋮d\Rightarrow d=1hoac\left(-1\right)\Rightarrow dpcm\)
Ai thấy đúng k nha
goij d là UCLN của 5n+1 và 6n+1
ta có 5n+1 chia hết cho d=> 6(5n+1) chia hết cho d=> 30n+6 chia hết cho d(1)
ta có 6n+1 chia hết cho d=> 5(6n+1) chia hết cho d=> 30n+5 chia hết cho d(2)
lấy (1)-(2)
ta có (30n+6)-(30n+5)chia hết cho d
vậy 1 chia hết cho d
nên d=(1;-1)
vậy phân số đã cho tối giản
Đáp án + giải thích các bước giải:
Gọi dd là ƯCLN(3n+4,5n+7)
→3n+4⋮d ; 5n+7⋮d
→5(3n+4)⋮d ; 3(5n+7)⋮d
→15n+20⋮d ; 15n+21⋮d
→15n+21−(15n+20)⋮d
→1⋮d
→d=1
→Phân số tối giản
Lời giải:
Gọi $d=ƯCLN(5n+6, 6n+7)$
$\Rightarrow 5n+6\vdots d; 6n+7\vdots d$
$\Rightarrow 6(5n+6)-5(6n+7)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{5n+6}{6n+7}$ là phân số tối giản.