3) Cho các số dương a,b,c thỏa mãn: \(b\ne c\), \(\sqrt{a}+\sqrt{b}\ne\sqrt{c}\) và \(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\).
Chứng minh rằng :\(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)