Cho \(0< a\le b\le c.CMR:\frac{b}{c}+\frac{c}{a}\ge\frac{b}{a}+\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(0< a\le b\le c.CMR:\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Cho \(0< a\le b\le c.CMR:\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
Lời giải:
BĐT đã cho tương đương với:
\(\frac{a}{b}-\frac{b}{a}+\frac{b}{c}-\frac{c}{b}+\frac{c}{a}-\frac{a}{c}\geq 0\)
\(\Leftrightarrow \frac{a^2-b^2}{ab}+\frac{b^2-c^2}{bc}+\frac{c^2-a^2}{ca}\geq 0\)
\(\Leftrightarrow \frac{a^2-b^2}{ab}-\frac{(a^2-b^2)+(c^2-a^2)}{bc}+\frac{c^2-a^2}{ca}\geq 0\)
\(\Leftrightarrow (a^2-b^2)\left(\frac{1}{ab}-\frac{1}{bc}\right)+(c^2-a^2)\left(\frac{1}{ca}-\frac{1}{bc}\right)\geq 0\)
\(\Leftrightarrow (a^2-b^2)(c-a)+(c^2-a^2)(b-a)\geq 0\)
\(\Leftrightarrow (a-b)(a+b)(c-a)-(c-a)(c+a)(a-b)\geq 0\)
\(\Leftrightarrow (a-b)(b-c)(c-a)\geq 0\) (luôn đúng với mọi $0< a\leq b\leq c$)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b$ hoặc $b=c$ hoặc $c=a$
a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`
a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12
Lời giải:
Vì $a,b,c\in (0;1]$ nên $ab,bc,ac\in (0;1]$
Do đó: \((ab-1)(bc-1)(ca-1)\leq 0\)
\(\Leftrightarrow (ab^2c-ab-bc+1)(ca-1)\leq 0\)
\(\Leftrightarrow a^2b^2c^2-(ab^2c+a^2bc+abc^2)+ab+bc+ac-1\leq 0\)
\(\Leftrightarrow a^2b^2c^2+ab+bc+ac\leq ab^2c+a^2bc+abc^2+1\)
\(\Leftrightarrow \frac{a^2b^2c^2+ab+bc+ac}{abc}\leq \frac{ab^2c+a^2bc+abc^2+1}{abc}\)
\(\Leftrightarrow abc+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq a+b+c+\frac{1}{abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Lời giải:
Xét hiệu:
\(\frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{a}{b}\right)=\frac{ba+c^2}{ac}-\frac{b^2+a^2}{ab}=\frac{b^2a+c^2b}{abc}-\frac{b^2c+a^2c}{abc}\)
\(=\frac{ab^2+bc^2-b^2c-a^2c}{abc}\geq \frac{a^2b+bc^2-b^2c-a^2c}{abc}=\frac{a^2(b-c)-bc(b-c)}{abc}=\frac{(a^2-bc)(b-c)}{abc}\)
Vì $0< a\leq b\leq c\Rightarrow a^2-bc\leq 0; b-c\leq 0$
$\Rightarrow \frac{b}{c}+\frac{c}{a}-\left(\frac{b}{a}+\frac{a}{b}\right)\geq 0$
$\Rightarrow \frac{b}{c}+\frac{c}{a}\geq \frac{b}{a}+\frac{a}{b}$ (đpcm)