K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

Ta có: 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

....................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

                                           \(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

                                            \(=2-\frac{1}{n}\)

                                                      đpcm

Tham khảo nhé~

13 tháng 4 2019

Akaima Việt LâmMinh

13 tháng 4 2019

Ông ko lm đk thì sao mà tôi làm được nhỉ???

31 tháng 3 2017

\(H=\frac{1}{a^2}+\frac{2}{a^3}+\frac{3}{a^4}+...+\frac{n}{a^{n+1}}\)

\(H=\frac{a^{n-1}+2.a^{n-2}+...+\left(n-1\right).a+n}{a^{n+1}}\)

\(H=\frac{1}{a^{n+1}}.\left[\left(a^{n-2}+a^{n-2}+a+1\right)+\left(a^{n-2}+a^{n-3}+...+a+1\right)+...+\left(a+1\right)+1\right]\)

Đặt \(Sn=1+a+a^2+...+a^n\)=>\(a.Sn=a+a^2+a^3+...+a^n+a^{n+1}\)

=> \(a.Sn-Sn=a^{n+1}-1\)=>\(Sn.\left(a-1\right)=a^{n+1}-1\)=>\(Sn=\frac{a^{n+1}-1}{a-1}\)

Khi đó \(H=\frac{1}{a^{n+1}}.\left[\frac{a^n-1}{a-1}+\frac{a^{n-1}-1}{a-1}+...+\frac{a^2-1}{a-1}+\frac{a-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1-\left(n+1\right)}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1}{a-1}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}-1}{\left(a-1\right)^2}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}}{\left(a-1\right)^2}-\frac{1}{a-1}-\frac{n+1}{a-1}\right]\)

\(H=\frac{1}{\left(a-1\right)^2}-\frac{1}{a^{n+1}.\left(a-1\right)^2}-\frac{n+1}{a^{n+1}.\left(a-1\right)}< \frac{1}{\left(a-1\right)^2}\)(đpcm)

Xong rồi đó , phù.......