Tìm số chính phương có bốn chữ số sao cho hai chữ số đầu giống nhau và hai chữ số cuối giống nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉm một số chính phương có bốn chữ số sao cho hai chữ số đầu giống nhau , hai chữ số cuối giống nhau
Gọi số cần tìm là \(\overline{aabb}=n^2\)
(\(1\le a\le9;0\le b\le9;a,b\in n\))
Ta có
\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)
Xét thấy \(\overline{aabb}\) chia hết cho 11
=> a+b chia hết cho 11
Mà \(1\le a+b\le18\)
=> a+b=11 (2)
Thay (2) vào (1) ta có
\(n^2=11^2\left(9a+1\right)\)
=> 9a+1 phải là số chính phương
Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82
=>b=4
Vậy số cần tìm là 7744
Giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Giả sử aabb=n^2
<=> a x10^3+ax10^2+bx10 +b=n^2
<=> 11 (100a+b)=n^2
=> n^2 chia hết cho 11
=> n chia hết cho 11
Do n^2 có 4 chữ số nên
32<n<100
=> n=33, n=44, n=55,...n=99
Thủ vào thì n=88 là thõa mãn
Vậy số đó là 7744
Gọi số chính phương phải tìm là \(A=m^2=\overline{aabb}\) và \(a,b\)là các chữ số,\(a\ne0\)
Ta có:\(A=\overline{aabb}=\overline{aa00}+\overline{bb}=11a\cdot100+11b=11\left[99a+\left(a+b\right)\right]\left(1\right)\)
Để A là số chính phương thì \(99a+\left(a+b\right)⋮11\)
\(\Rightarrow a+b⋮11\)vì \(99a⋮11\)
Mà \(1\le a+b\le18\)
\(\Rightarrow a+b=11\)
Thay vào \(\left(1\right)\) ta được:\(m^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)
\(\Rightarrow9a+1\)là số chính phương
Thử a lần lượt từ 1 đến 9 theo điều kiện trên ta được a=7 thỏa mãn khi đó b=4.
\(\Rightarrow\)Số chính phương cần tìm là \(7744\)
Giả sử aabb=n2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=>11 ( 100a + b ) = n2
=>n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 ,... n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
Đặt số A là \(\overline{aabb}\)\(=n^2\) \(a,b\in N;\)\(1\le a\le9\)\(;0\le b\le9\)
\(\Rightarrow10^3a+10^2a+10b+b=n^2\)\(\Leftrightarrow11\left(100a+b\right)=n^2\)\(\Leftrightarrow11\left(99a+a+b\right)=n^2\) (1).
Do đó \(99a+a+b\) chia hết cho 11 nên \(a+b\) chia hết cho 11. Vậy, \(a+b=11\)
Thay \(a+b=11\) vào (1) ta được \(11\left(99a+11\right)=n^2=11^2\left(9a+1\right)\) . Do đó \(9a+1\) phải là số chính phương.
Thử với \(a=1,2,3,...,9\) chỉ có \(a=7\) thỏa \(9a+1=9.7+1=64=8^2\) là số chính phương. Vậy, \(a=7\)
Mà \(a+b=11\Rightarrow b=11-a=11-7=4\) Vậy số A cần tìm là \(7744\).
+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744