K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Gọi số cần tìm là \(\overline{aabb}=n^2\)

(\(1\le a\le9;0\le b\le9;a,b\in n\))

Ta có

\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)

Xét thấy \(\overline{aabb}\) chia hết cho 11

 => a+b chia hết cho 11

Mà \(1\le a+b\le18\)

=> a+b=11 (2)

Thay (2) vào (1) ta có

\(n^2=11^2\left(9a+1\right)\)

=> 9a+1 phải là số chính phương

Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82

=>b=4

Vậy số cần tìm là 7744

 

 

19 tháng 7 2016

Giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

29 tháng 11 2015

Giả sử aabb=n^2

<=> a x10^3+ax10^2+bx10 +b=n^2

<=> 11 (100a+b)=n^2

=> n^2 chia hết cho 11

=> n chia hết cho 11

Do n^2 có 4 chữ số nên 

32<n<100

=> n=33, n=44, n=55,...n=99

Thủ vào thì n=88 là thõa mãn 

Vậy số đó là 7744

1 tháng 2 2019

Gọi số chính phương phải tìm là \(A=m^2=\overline{aabb}\) và \(a,b\)là các chữ số,\(a\ne0\)

Ta có:\(A=\overline{aabb}=\overline{aa00}+\overline{bb}=11a\cdot100+11b=11\left[99a+\left(a+b\right)\right]\left(1\right)\)

Để A là số chính phương thì \(99a+\left(a+b\right)⋮11\)

\(\Rightarrow a+b⋮11\)vì \(99a⋮11\)

Mà \(1\le a+b\le18\)

\(\Rightarrow a+b=11\)

Thay vào \(\left(1\right)\) ta được:\(m^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)

\(\Rightarrow9a+1\)là số chính phương

Thử a lần lượt từ 1 đến 9 theo điều kiện trên ta được a=7 thỏa mãn khi đó b=4.

\(\Rightarrow\)Số chính phương cần tìm là \(7744\)

1 tháng 11 2017

Giả sử aabb=n2 
<=> a . 10+ a . 102 + b . 10 + b = n2 
<=>11 ( 100a + b ) = n2 
=>n2 chia hết cho 11 
=> n chia hết cho 11 
Do n2 có 4 chữ số nên 
32 < n < 100 
=> n = 33 , n = 44 , n = 55 ,... n = 99 
Thử vào thì n = 88 là thỏa mãn 
Vậy số đó là 7744

  
16 tháng 3 2020

7744

Chuc ban hoc tot nha!

7 tháng 3 2016

Đặt số A là \(\overline{aabb}\)\(=n^2\) \(a,b\in N;\)\(1\le a\le9\)\(;0\le b\le9\)
\(\Rightarrow10^3a+10^2a+10b+b=n^2\)\(\Leftrightarrow11\left(100a+b\right)=n^2\)\(\Leftrightarrow11\left(99a+a+b\right)=n^2\) (1).
Do đó \(99a+a+b\) chia hết cho 11 nên \(a+b\) chia hết cho 11. Vậy, \(a+b=11\)
Thay \(a+b=11\) vào (1) ta được \(11\left(99a+11\right)=n^2=11^2\left(9a+1\right)\) . Do đó \(9a+1\) phải là số chính phương.
Thử với \(a=1,2,3,...,9\) chỉ có \(a=7\) thỏa \(9a+1=9.7+1=64=8^2\) là số chính phương. Vậy, \(a=7\) 
Mà \(a+b=11\Rightarrow b=11-a=11-7=4\) Vậy số A cần tìm là \(7744\).

7 tháng 3 2016

+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744