K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :

b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10

\(\Rightarrow\)\(\ge\)\(\Rightarrow\) b = 7 hoặc b = 9

+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)\(⋮\)\(\Rightarrow\)d = 3 hoặc d = 9

Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )

Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )

+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7 

Mà a7 và a9 là số nguyên tố thì a = 1

Vậy abcd = 1979

14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

30 tháng 3 2023

Đúng mình sẽ like nha

 

Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b 

\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)

=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8 

Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4

+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21

\(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn

+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51

\(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn

Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73

25 tháng 5 2016

Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

21 tháng 10 2016

mk thấy hình như phải nạp thẻ ms xem dc hết mà

21 tháng 10 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow b^2=a.c\)

Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)

+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)

+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)

+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)

+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)

Vậy abc = 139

21 tháng 10 2016

Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)

\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)

\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)

\(\Rightarrow10ac+bc=10b^2+bc\)

\(\Rightarrow10ac=10b^2\)

\(\Rightarrow ac=b^2\)

\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)