Cho góc xOy nhỏ hơn 90 độ lấy điểm A và C thuộc Ox , B và D thuộc Oy sao cho oA nhỏ hơn góc C , OA = OB và OC = OD Gọi M và N lần lượt là trung điểm của AB và CD
Chứng minh rằng AB song song với CD
Giúp mình nhanh với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
\(a,\left\{{}\begin{matrix}OA=OC\\OD=OB\\\widehat{AOB}\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\\ \Rightarrow AD=BC\\ b,\Delta AOD=\Delta COB\\ \Rightarrow\widehat{ADO}=\widehat{CBO};\widehat{OAD}=\widehat{OCB}\\ \Rightarrow180^0-\widehat{OAD}=180^0-\widehat{OCB}\\ \Rightarrow\widehat{ECD}=\widehat{EAB}\\ \text{Ta có}\left\{{}\begin{matrix}OA=OC\\OD=OB\end{matrix}\right.\Rightarrow CD=OD-OC=OB-OA=AB\\ \left\{{}\begin{matrix}AB=CD\\\widehat{ADO}=\widehat{CBO}\\\widehat{ECD}=\widehat{EAB}\end{matrix}\right.\Rightarrow\Delta EAB=\Delta ECD\left(g.c.g\right)\)
OA = OB (gt)
=> Tam giác OAB cân tại O có OM là đường trung tuyến (M là trung điểm của AB)
=> OM là tia phân giác của xOy (1)
OM là đường trung trực của AB
OC = OD (gt)
=> Tam giác OCD cân tại O có ON là đường trung tuyến (N là trung điểm của CD)
=> ON là tia phân giác của xOy (2)
Từ (1) và (2)
=> \(OM\equiv ON\)
=> O, M, N thẳng hàng
OM _I_ AB (OM là đường trung trực của AB)
OM _I_ CD (ON là đường trung tuyến của tam giác OCD cân tại O)
=> AB // CD
Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBC có:
OA = OC (GT)
\(\widehat{O}\): góc chung
OB = OD (GT)
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
b/ Ta có: \(\widehat{B}\)=\(\widehat{D}\) (vì tam giác OAD = tam giác OBC) (1)
Ta có: \(\begin{cases}OA=OC\\OB=OD\end{cases}\)\(\Rightarrow AB=CD\) (2)
Ta có: \(\widehat{OAD}\)=\(\widehat{OCB}\) (vì tam giác OAD = tam giác OBC) (*)
+)Ta có: \(\widehat{OAD}\)+\(\widehat{DAB}\)=1800 (**)
+) Ta có: \(\widehat{OCB}\)+\(\widehat{BCD}\)=1800 (***)
Từ (*),(**),(***) => \(\widehat{DAB}\)=\(\widehat{BCD}\) (3)
Từ (1),(2),(3) => tam giác EAB = tam giác ECD
c/ Xét tam giác OAE và tam giác OCE có:
OA = OC (GT)
AE = EC (vì tam giác EAB = tam giác ECD)
OE: cạnh chung
=> tam giác OAE = tam giác OCE (c.c.c)
=> \(\widehat{AOE}\)=\(\widehat{COE}\) (2 góc tương ứng)
=> OE là phân giác \(\widehat{xOy}\) (đpcm)
a, \(\Delta OAB\)có \(AM=MB\left(đb\right)\)
\(\Rightarrow OM\)là đường trung tuyến
Mà \(\Delta OAB\)có \(OA=OB\left(đb\right)\)
\(\Rightarrow\Delta AOB\)cân tại O
\(\Rightarrow OM\)vừa là đường trung tuyến, vừa là đường trung trực ( đpcm)
\(b,\)CM tương tự \(ON\)là đường trung trực của \(\Delta OCD\)
\(\Rightarrow ON\perp CD\)
Mà \(OM\perp AB\)
\(\Rightarrow CD//AB\)\(\left(đpcm\right)\)