a, 678x chia hết cho 2 và 5 dư 3
b,x325y chia hết cho 45
Jup mik nha. Cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm là $a$
Theo bài ra thì:
$a-3\vdots 4\Rightarrow a+1\vdots 4$
$a-4\vdots 5\Rightarrow a+1\vdots 5$
$a-5\vdots 6\Rightarrow a+1\vdots 6$
Tức là $a+1$ là bội chung của $4,5,6$
$\Rightarrow a+1\vdots \text{BCNN(4,5,6)}$
$\Rightarrow a+1\vdots 60$
Đặt $a=60k-1$ với $k$ là số tự nhiên
$a\vdots 7$ tức là $60k-1\vdots 7$
$\Leftrightarrow 60k-1-56k\vdots 7$
$\Leftrightarrow 4k-1\vdots 7$
$\Leftrightarrow 4k-8\vdots 7$
$\Leftrightarrow 4(k-2)\vdots 7$
$\Leftrightarrow k-2\vdots 7$
Để $a$ nhỏ nhất thì $k$ nhỏ nhất. Trong trường hợp này, số $k$ tự nhiên nhỏ nhất là $2$
$\Rightarrow a=60k-1=60.2-1=119$
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
a) 3 có số dư là 0;1;2
4 có số dư là 0;1;2;3
5 có số dư là ;0;1;2;3;4
b)3k;3k+1;3k+2
câu a m ko chắc chúc b học tốt
a)
315 - 3 (x-4) = 93
=> 3( x - 4 ) = 315 - 93
=> 3( x - 4 ) = 222
=> x - 4 = 222 : 3
=> x - 4 = 74
=> x = 74 + 4
=> x = 78 (t/m)
b)
80 chia hết cho x
72 chia hết cho x
=> x \(\in\)ƯC ( 80,72 )
Lại có: 80 = 24.5
72 = 23.32
=> ƯCNN ( 80,72) = 23 = 8
=> ƯC ( 80,72) = Ư( 8 ) = { 1; 2; 4; 8 }
Mà x > 7
=> = 8 ( t/m )
Gọi số đó là a, ta có:
a:2 dư 1, a:3 dư 2, a:4 dư 3, a:5 dư 4, a:6 dư 5, a:10 dư 9 =>(a+1) chia hết 2;3;4;5;6;10 =>a+1 thuộc BC(2;3;4;5;6;10)
BCNN(2;3;4;5;6;10)=60 =>a+1 thuộc BC(2;3;4;5;6;10)=B(60)={0;60;120;180;....}
=>a thuộc{-1;59;119;179;...}
mà a là số tự nhiên nhỏ nhất =>a=59
Vậy số cần tìm là 59
a)Để 678x chia hết 2 thì x=0;2;4;6;8
Để 678x chia 5 dư thì x=3;8
Suy ra x=8
Vậy 678x=6788
#Hok_tốt
Trả lời
a)678x chia hết cho 2 và 5 dư 3
Để 678x chia hết cho 2 x=>2;4;6;8;0
Và chia 5 dư 3 thì ta có:0;5 chia hết cho 5 và dư 3 =>0+3=3 hoặc 5+3=8
Vậy số x là 8.Số cần tìm là 6788
b)x325y chia hết cho 45
Để số đó chia hết cho 45 thì phải chia hết cho 9 vì 45 chia hết cho 9.
Và cũng phải chai hết cho 5 vì chữ số tận cùng của số 45 là 5.
Ta xét:y=>0;5
Trường hợp 1:y=0
Thì :3+2+5+0=10 nên x=8=>10+8=18 để chia hết cho 9
Trường hợp 2:y=5
Thì:3+2+5+5=15 nên x=3=>15+3=18 để chia hết cho 9
Vậy:x={8;3}
Và y={0;5}