K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Ta có : 1+4+4^2+.............+4^15 có 16 số hạng 

Mà 16 : 2 =8

\(\Rightarrow\)(1+4)+(4^2+4^3)+..............+(4^14+4^15)

\(\Rightarrow\)(1+4)+(1+4).4+...........+(1+4)4^13

\(\Rightarrow\)(1+4)(1+4+......+4^13)

\(\Rightarrow\)5(1+4+.....+4^13)  \(⋮\)5   (ĐPCM)

11 tháng 2 2017

Giải:

Theo đề ta có: 1 + 4 + 4^2 +. . . .+ 4^15 có 16 số hạng

Mà 16 : 2 = 8

=> (1 + 4) + (4^2 + 4^3) +. . . .+(4^14 + 4^15)

=> (1 + 4) + (1 + 4) . 4 +. . . .+ (1 + 4) . 4^13

=> (1 + 4) . (1 + 4+. . . .+ 4 ^13)

=> 5 . (1 +4 +. . . .+ 4^13)   \(⋮\)5 (điều phải chứng minh)

6 tháng 1 2018

a,S=1+3+32+...+360

3S=3+32+33+...+361

3S-S=(3+32+33+...+361)-(1+3+32+...+360)

2S = 361 - 1

b,2S+1=361-1+1=361 = 3x-3

=>x-3=61=>x=64

c, S=1+3+32+...+360

=(1+3)+(32+33)+...+(359+360)

=4+32(1+3)+...+359(1+3)

=4+32.4+...+359.4

=4(1+32+...+359) chia hết cho 4

S=1+3+32+...+360

=(1+3+32)+....+(358+359+360)

=13+...+358(1+3+32)

=13+...+358.13

=13(1+...+358)

6 tháng 1 2018

còn S chia hết cho 10

6 tháng 10 2017

Câu 1:

a) n+4 chia hết cho n

suy ra 4 chia hết cho n(vì n chia hết cho n)

suy ra n thuộc Ư(4) {1;2;4}

Vậy n {1;2;4}

b) 3n+7 chia hết cho n

suy ra 7 chia hết cho n(vì 3n chia hết cho n)

suy ra n thuộc Ư(7) {1;7}

Vậy n {1;7}

c) 27-5n chia hết cho n

suy ra 27 chia hết cho n(vì 5n chia hết cho n)

suy ra n thuộc Ư(27) {1;3;9;27}

Vậy n {1;3;9;27}

d) n+6 chia hết cho n+2 

suy ra (n+2)+4 chia hết cho n+2

suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)

suy ra n+2 thuộc Ư(4) {1;2;4}

n+2 bằng 1 (loại)

n+2 bằng 2 suy ra n bằng 0

n+2 bằng 4 suy ra n bằng 2

Vậy n {0;2}

e) 2n+3 chia hết cho n-2

suy ra 2(n-2)+7 chia hết cho n-2

suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)

suy ra n-2 thuộc Ư(7) {1;7}

n-2 bằng 1 suy ra n bằng 3

n-2 bằng 7 suy ra n bằng 9

Vậy n {3;9}

23 tháng 12 2019

a) \(A=1+3+...+3^{50}\)

\(3A=3+3^2+...+3^{51}\)

\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)

B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)

\(=13+13\cdot3^2+...+13\cdot3^{48}\)

\(=13\left(1+3^2+...+3^{48}\right)⋮2\)

\(\Rightarrow A⋮3\)

C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)

\(=13+40\left(3^3+3^7+...+3^{47}\right)\)

Vậy A chia cho 40 dư 13

d) theo câu C

\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)

có tân cùng  là 0

Mà + thêm 13 nên có tận cùng là 3

23 tháng 12 2019

Cau B mk hơi lỗi xíu , bạn tự sửa nha

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

13 tháng 12 2018

Chúc mày học ngu

Chúc mày học ngu

Chúc mày học ngu

Chúc mày học ngu