Tính:
A = (-1) + (-3)+...+(-99)
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$D=[1+(-3)]+[5+(-7)]+....+[97+(-99)]$
$=(-2)+(-2)+....+(-2)$
Số lần xuất hiện của -2 là: $[(99-1):2+1]:2=25$
$D=(-2).25=-50$
Giải:
a) \(2\dfrac{17}{20}-1\dfrac{15}{11}+6\dfrac{9}{20}:3\)
\(=\dfrac{57}{20}-\dfrac{26}{11}+\dfrac{129}{20}:3\)
\(=\dfrac{107}{220}+\dfrac{43}{20}\)
\(=\dfrac{29}{11}\)
b) \(4\dfrac{3}{7}:\left(\dfrac{7}{5}.4\dfrac{3}{7}\right)\)
\(=\dfrac{31}{7}:\left(\dfrac{7}{5}.\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}\)
\(=\dfrac{5}{7}\)
c) \(\left(3\dfrac{2}{9}.\dfrac{15}{23}.1\dfrac{7}{29}\right):\dfrac{5}{23}\)
\(=\left(\dfrac{29}{9}.\dfrac{15}{23}.\dfrac{36}{29}\right):\dfrac{5}{23}\)
\(=\dfrac{60}{23}:\dfrac{5}{23}\)
\(=12\)
a] 23/16
c)7/45
d)1/2
b)83/48
Đúng nhé mình làm tong toán nâng cao lớp 5 rồi
A= -1 - (2-3-4+5) - (6+7+8-9) -... - (198 -199-120+121)
A= -1 - 0-0-...-0
A= -1
nhớ k giùm mk
Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$
$\Rightarrow 16A< 3$
$\Rightarrow A< \frac{3}{16}$
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow3A+A=1+\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{-2}{3^2}+\frac{3}{3^2}\right)+\left(\frac{3}{3^3}-\frac{4}{3^3}\right)+...+\left(\frac{-98}{3^{98}}+\frac{99}{3^{98}}\right)+\left(\frac{99}{3^{99}}-\frac{100}{3^{99}}\right)-\frac{100}{3^{100}}\)
\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3.4A=3-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow3.4A+4A=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow16A=3-\frac{99}{3^{99}}-\frac{100}{3^{100}}< 3\Rightarrow A< \frac{3}{16}< \frac{3}{4}\)
A = (-1) + (-3) + ... + (-99)
= (0 - 1) + (0 - 3) + ... + (0 - 99)
= 0 - (1 + 3 + ... + 99)
= 0 - [(99 - 1) : 2 + 1] . (99 + 1): 2
= 0 - 50.50
= 0 - 2500
= - 2500
Vậy A = - 2500
= -(1+3+5+...+99)
Số số hạng: (99-1):2+1=50
= -[50(99+1):2]
= -2500