K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 2 2020

a/ \(-1\le x\le1\)

\(\Leftrightarrow\frac{2x}{\sqrt{1+x}+\sqrt{1-x}}-x\ge0\)

\(\Leftrightarrow x\left(\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\right)\ge0\)

Do \(0< \sqrt{1+x}+\sqrt{1-x}\le\sqrt{2\left(1+x+1-x\right)}=2\)

\(\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}\ge1\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\ge0\)

\(\Rightarrow x\ge0\)

Vậy nghiệm của BPT là \(0\le x\le1\)

b/ \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}\ge2\sqrt{\left(x-1\right)\left(x-4\right)}\)

- Với \(x=1\) thỏa mãn

- Với \(x\ge4\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}\ge2\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x-4}+\sqrt{x-3}-\sqrt{x-4}\ge0\)

\(\Leftrightarrow\frac{2}{\sqrt{x-2}+\sqrt{x-4}}+\frac{1}{\sqrt{x-3}+\sqrt{x-4}}\ge0\) (luôn đúng)

- Với \(x< 1\Rightarrow\sqrt{2-x}+\sqrt{3-x}\ge2\sqrt{4-x}\)

Tương tự bên trên ta có BPT luôn sai

Vậy nghiệm của BPT đã cho là \(\left[{}\begin{matrix}x=1\\x\ge4\end{matrix}\right.\)

1 tháng 4 2020

1. Đợi chút t tìm cách ngắn gọn.

2. ĐK: \(\left\{{}\begin{matrix}2x^2+8x+6\ge0\\x^2-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge1\\x=-1\end{matrix}\right.\) (*)

BPT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2+8x+5+2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\le\left(2x+2\right)^2\left(1\right)\end{matrix}\right.\)

Giải (1) \(\Leftrightarrow x^2-1-2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\ge0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\right)\ge0\)

TH1: \(\sqrt{x^2-1}=0\Leftrightarrow x=\pm1\) (tm)

TH2: \(x^2-1\ne0\)

\(\Leftrightarrow\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\ge0\)

\(\Leftrightarrow\sqrt{x^2-1}\ge2\sqrt{2x^2+8x+6}\)

\(\Leftrightarrow x^2-1\ge8x^2+32x+24\)

\(\Leftrightarrow7x^2+32x+25\le0\)

\(\Leftrightarrow-\frac{25}{7}\le x\le-1\) kết hợp đk (*) và đk để giải bpt

=>\(x=-1\)

Vậy \(x=\pm1\)

1 tháng 4 2020

3. ĐK: \(x\ge\frac{4}{5}\)

\(BPT\Leftrightarrow\sqrt{5x-4}-\sqrt{3x-2}+\sqrt{4x-3}-\sqrt{2x-1}>0\)

\(\Leftrightarrow\frac{2x-2}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{2x-2}{\sqrt{4x-3}+\sqrt{2x-1}}>0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{1}{\sqrt{4x-3}+\sqrt{2x-1}}\right)>0\)

\(\Leftrightarrow x-1>0\) \(\Leftrightarrow x>1\)

Vậy \(x>1\)

NV
30 tháng 5 2020

a/ ĐKXĐ \(x\ge1\)

\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)

\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)

\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)

\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)

Vậy nghiệm của BPT là \(1\le x< 2\)

b/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)

\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)

\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)

\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)

\(\Rightarrow3\le x< 4\)

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)

\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)

- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge\frac{2}{3}\) hai vế ko âm

\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)

\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)

Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)

30 tháng 5 2020

Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :

Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến

25 tháng 11 2021

\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)