Tim so tu nhien de
A=n+10/2n-8 co gia tri la mot so nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để B=\(\dfrac{7n-8}{2n-3}\)
Thì 7n-8 chia hết cho 2n-3
\(\Rightarrow\)7n-3-5 chia hết 2n-3
\(\Rightarrow\)5 chia hết 2n-3
Giá trị lớn nhất của n khi 2n-3\(\in\)
Ư(5)và là Ư lớn nhất
\(\Rightarrow\)n=(5+3):2=4
b) cũng tương tự nha bạn
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Để n+3/2n−2 có giá trị nguyên thì n+3⋮2n−2
Ta có n+3⋮2n−2
(n+3)−(2n−2)⋮2n−2
2(n+3)−(2n−2)⋮2n−2
2n+6−2n+2⋮2n−2
8⋮2n−2
2n−2∈ Ư(8)
Ta có : _ Nếu 2n-2=1 2n=3n=1,5
_ Nếu 2n-2=2 2n=4n=2
_Nếu 2n-2=4 2n=6 n=3
_Nếu 2n-2=8 2n=8 n=5
_Nếu 2n-2=-12n=1n=0,5
_Nếu 2n-2=-22n=0n=0
_ Nếu 2n-2=-4 2n=-2 n=-1
_ Nếu 2n-2=-82n=-6 n=-3
Vì n là số tự nhiên n=2 hoặc 3 hoặc 5 hoặc 0
nguồn : cop
4n+5/2n-1 nguyên khi
4n+5 \(⋮\)2n-1
hay 2(2n-1)+9 \(⋮\)2n-1
=>9 \(⋮\)2n-1
=>2n-1 thuộc Ư(9) thuộc 1,-1,3,-3,9,-9
ta có
2n-1 1 -1 3 -3 9 -9
2n 2 0 4 -2 10 -8
n 1 0 2 -1 5 -4
a: 12/y=4
nên y=12:4=3
b: Để 21/a;22/a-1;24/a+1 đều là số nguyên thì \(\left\{{}\begin{matrix}a\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\\a-1\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\\a+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;8;-8;12;-12;24;-24\right\}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\\a\in\left\{2;0;3;-1;12;-10;23;-21\right\}\\a\in\left\{0;-2;1;-3;2;-4;3;-5;5;-7;7;-9;11;-13;23;-23\right\}\end{matrix}\right.\)
hay a=3
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
ta có n+3 chia hết cho 7n+1
7n+21 chia hết cho 7n+1
7n+21- (7n+1) chia hết cho 7n+1
20 chia hết cho 7n+1
7n+1 thuộc ( 1;2;4;5;10;20)
tự làm tiếp nhé
dễ thì làm thử điCristiano Ronaldo