K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

mn ơi giúp e

9 tháng 8 2019

mn ơi giúp e

e k cho a trả lời nhan

9 tháng 8 2019

e k cho ai trả lời nhanh nhất

11 tháng 8 2019

MN ƠI GIÚP E

6 tháng 9 2019

bx trc mà bt là chj giải cho rồi

h ms on olm nên ms đọc lại

^-^

9 tháng 8 2019

mn ơi giú e

18 tháng 2 2017

\(------------------------\)

Từ bất đẳng thức cơ bản sau: \(a^2+b^2+c^2\ge ab+bc+ca\)  thì ta rút ra một bất đăng thức mới có dạng như sau:

\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\) 

nên  \(ab+bc+ca\le3\)  \(\left(i\right)\)

\(---------------------\)

Ta có:

\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\) 

Thiết lập tương tự các mối quan hệ như trên theo sơ đồ hoán vị  \(b\rightarrow c\rightarrow a\)  như sau:

\(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)

Từ \(\left(1\right);\left(2\right)\)  và   \(\left(3\right)\)  với lưu ý đã chứng minh ở  \(\left(i\right)\)  suy ra  \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\ge\frac{3}{2}+3-\frac{3}{2}=3\)

Dấu bằng xảy ra khi và chỉ khi  \(a=b=c=1\)

30 tháng 1 2019

Sửa lại đề là tìm Max nhé m.n

Ta có:

\(\frac{ab+bc+ca+6\left(a+b+c\right)+27}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{\left(b+3\right)\left(c+3\right)+\left(c+3\right)\left(a+3\right)+\left(a+3\right)\left(b+3\right)}{\left(a+3\right)\left(b+3\right)\left(c+3\right)}=\frac{3}{5}\)

\(\Leftrightarrow\frac{5}{a+3}+\frac{5}{b+3}+\frac{5}{c+3}=3\Leftrightarrow\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

Xét biểu thức:

\(\frac{a^2-4}{a^2-9}=\frac{\left(a-2\right)\left(a+2\right)}{\left(a-3\right)\left(a+3\right)}=\frac{a-2}{a+3}.\frac{a+2}{a-3}\)

tưởng tự:

\(\frac{b^2-4}{b^2-9}=\frac{b-2}{b+3}.\frac{b+2}{b-3},\frac{c^2-4}{c^2-9}=\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}=\frac{a-2}{a+3}.\frac{a+2}{a-3}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\)

Do vai trò của a và b và c như nhau nên ta giả sử

\(a\ge b\ge c\)

Khi đó ta có:

\(\frac{a-2}{a+3}\ge\frac{b-2}{b+3}\ge\frac{c-2}{c+3},\frac{a+2}{a-3}\le\frac{b+2}{b-3}\le\frac{c+2}{c-3}\)

Áp dụng bất đẳng thức chebyshev cho 2 bộ ngược chiều trên ta có
\(\frac{a-2}{a+3}.\frac{a+3}{a-2}+\frac{b-2}{b+3}.\frac{b+2}{b-3}+\frac{c-2}{c+3}.\frac{c+2}{c-3}\le\left(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}\right).\left(\frac{a+2}{a-3}+\frac{b+2}{b-3}+\frac{c+2}{c-3}\right)\)

Mà \(\frac{a-2}{a+3}+\frac{b-2}{b+3}+\frac{c-2}{c+3}=0\)

\(\Rightarrow\frac{a^2-4}{a^2-9}+\frac{b^2-4}{b^2-9}+\frac{c^2-4}{c^2-9}\le0\)

\(\Rightarrow\frac{5}{a^2-9}+\frac{5}{b^2-9}+\frac{5}{c^2-9}\le-3\Rightarrow\frac{1}{a^2-9}+\frac{1}{b^2-9}+\frac{1}{c^2-9}\le\frac{-3}{5}\)

Dấu bằng xảy ra khi a=b=c=2

30 tháng 1 2019

Tìm max nha mấy god, e bị nhầm sory

19 tháng 12 2016

Bài 1:
Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (1)

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+c^2}\)