Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\) (1)
Tương tự \(\frac{b+1}{c^2+1}\ge\left(b+1\right)-\frac{bc+c}{2}\) (2)
và \(\frac{c+1}{a^2+1}\ge\left(a+1\right)-\frac{ca+a}{2}\) (3)
Cộng (1), (2), (3) vế theo vế:
\(VT\ge\left(a+b+c+3\right)-\frac{\left(ab+bc+ca\right)+\left(a+b+c\right)}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)
\(a+b+c+ab+ac+bc=6abc\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Hay \(x+y+z+xy+yz+xz=6\)
Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge3\)
Ta có : \(\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)\ge2\left(x+y+z\right)\) (BĐT Cosi)
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\) (BĐT Cosi)
\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)=12\)
\(\Rightarrow x^2+y^2+z^2\ge3\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m
\(\frac{a+1}{b^2+1}=\frac{\left(a+1\right)\left(b^2+1\right)-b^2\left(a+1\right)}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+a}{2}\)
Thiết lập các bất đẳng thức tương tự rồi cộng lại ta được:
\(LHS\ge a+b+c+3-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3=RHS\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge a+b+c+3-\frac{a+b+c+ab+bc+ac}{2}\)
\(\ge a+b+c+3-\frac{a+b+c+\frac{\left(a+b+c\right)^2}{3}}{2}\)
\(\ge3+3-\frac{3+\frac{3^2}{3}}{2}=3\)
\("="\Leftrightarrow a=b=c=1\)
\(------------------------\)
Từ bất đẳng thức cơ bản sau: \(a^2+b^2+c^2\ge ab+bc+ca\) thì ta rút ra một bất đăng thức mới có dạng như sau:
\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
nên \(ab+bc+ca\le3\) \(\left(i\right)\)
\(---------------------\)
Ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
Thiết lập tương tự các mối quan hệ như trên theo sơ đồ hoán vị \(b\rightarrow c\rightarrow a\) như sau:
\(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge c+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)
Từ \(\left(1\right);\left(2\right)\) và \(\left(3\right)\) với lưu ý đã chứng minh ở \(\left(i\right)\) suy ra \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\ge\frac{3}{2}+3-\frac{3}{2}=3\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=1\)