100 + 22 x 2 - 452796133 x 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
a, | x+3 | = -27/11 × 22/-9
=> |x + 3| = 6
=> x + 3 = 6 hoặc x + 3 = -6
=> x = 3 hoặc x = -9
vậy_
b, (x-3) × (2x - 7) = 0
=> x - 3 = 0 hoặc 2x - 7 = 0
=> x = 3 hoặc x = 7/2
vậy_
c, (x-1) + (x-2) + (x-3) + ... + (x-100) = 4950
=> x - 1 + x - 2 + x - 3 + ... + x - 100 = 4950
=> 100x - (1 + 2 + 3 + ... + 100) = 4950
=> 100x - (1 + 100).100 : 2 = 4950
=> 100x - 5050 = 4950
=> 100x = 10000
=> x = 10
14 + x3 = 22 . 1000
14 + x3 = 22
x3 = 22 - 14 = 8
=> x = 2
125 - 5.(x - 3) = 102
5.(x - 3) = 25
x - 3 = 5
x = 8
a) x-14=3x + 18
x - 3x = 18 + 14
-2x = 32
=> x = -16
b) (x+7)(x-9)=0
=> TH1: x+7=0 => x = -7
=> TH2: x-9=0 => x = 9
c) x(x+3) =0
=> TH1: x=0
=> TH2: x+3 =0 => x = -3
d) (x-2)(5-x)=0
=> TH1: x-2=0 => x=2
=> Th2: 5-x=0 => x=5
100 + 22 x 2 - 452796133 x 0
=>100 + 44 - 0
=> 144
\(100+22\times2-452796133\times0\)
\(=100+44-0\)
\(=144-0\)
\(=144\)