K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(\frac{1}{1\cdot9}+\frac{1}{9\cdot17}+...+\frac{1}{x\left(x+8\right)}=\frac{29}{410}\)

\(\frac{8}{1\cdot9}+\frac{8}{9\cdot17}+...+\frac{8}{x\left(x+8\right)}=\frac{116}{205}\)

\(\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{x}-\frac{1}{x+8}=\frac{116}{205}\)

\(1-\frac{1}{x+8}=\frac{116}{205}\)

\(\frac{x+8}{x+8}-\frac{1}{x+8}=\frac{116}{205}\)

\(\frac{x+7}{x+8}=\frac{116}{205}\)

\(\Leftrightarrow\text{ }205\left(x+7\right)=116\left(x+8\right)\)

\(205x+1435=116x+928\)

\(116x-205x=1435-928\)

\(-89x=507\)

\(x=-5\frac{62}{89}\)

tách vế trái đặt là A\(A=\frac{1}{1.9}+\frac{1}{9.17}+...+\frac{1}{x.\left(x+8\right)}\)

\(A=\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{x}-\frac{1}{x+8}\)

\(A=\frac{1}{1}-\frac{1}{x+8}\)

thay \(\frac{1}{1}-\frac{1}{x+8}=\frac{29}{410}\)

\(\frac{1}{x+8}=\frac{1}{1}-\frac{29}{410}=\frac{410}{410}-\frac{29}{410}\)

\(\frac{1}{x+8}=\frac{381}{410}\)

hình như sai ở đâu

24 tháng 6 2017

\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{19.21}\right).x=\frac{9}{7}\)

\(\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{21-19}{19.21}\right).x=\frac{9}{7}\)

\(\left[\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right].x=\frac{9}{7}\)

 \(\left[\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\right].x=\frac{9}{7}\)

 \(\left[\frac{1}{2}.\frac{2}{7}\right].x=\frac{9}{7}\)

\(\frac{1}{7}.x=\frac{9}{7}\)

\(\Rightarrow x=\frac{9}{7}\div\frac{1}{7}=9\)

24 tháng 6 2017

\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)

\(\Leftrightarrow\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)x=\frac{9}{7}\)

\(\Leftrightarrow\left(\frac{1}{3}-\frac{1}{21}\right)x=\frac{9}{7}\)

\(\Leftrightarrow\frac{2}{7}x=\frac{9}{7}\)

\(\Leftrightarrow x=\frac{9}{2}\)

12 tháng 6 2018

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)

         \(\frac{11}{45}.x=\frac{23}{45}\)

                  \(x=\frac{23}{45}:\frac{11}{45}\)

                 \(x=\frac{23}{11}\)

12 tháng 6 2018

Gọi A=(1/1.2.3+ 1/2.3.4 +...+ 1/8.9.10) .x=23/45

    2A=3-1/1.2.3+ 4–2/2.3.4+ 5–4/3.4.5+ ... + 10–8/8.9.10

    2A=1/2 —1/2.3+ 1/2.3 — 1/3.4+ 1/3.4– 1/4.5 +...+1/8.9–1/9.10=1/2–1/9.10=44/90

     A=44/90 : 2=22/90

     x=23/45:A= 23/45 : 22/90=23/11= 2 1/1( hỗn số)

    

26 tháng 1 2016

hình như bài này là dạng chuỗi

29 tháng 1 2016

Bước 1: \(\left(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{19\times21}\right)=\frac{1}{7}\)

Bước 2: \(x=\frac{9}{7}\div\frac{1}{7}=9\)

23 tháng 4 2016

b)

\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)

\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(x-2=8\)

=> x = 10

23 tháng 4 2016

a) 

\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)

\(A=\frac{1}{2016}\)

11 tháng 9 2018

a) 

( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0

\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)

P/s: đợi xíu làm câu b

11 tháng 9 2018

b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)

\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)

\(\frac{-1}{x+3}=\frac{1}{2015}\)

\(\Leftrightarrow x+3=-2015\)

\(\Leftrightarrow x=-2018\)

Vậy,.........

11 tháng 2 2017

Trước hết ta thực hiện biểu thức trong ngoặc:

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)\)

\(=\frac{1}{2}.\frac{22}{45}\) \(=\frac{11}{45}\)

\(\Rightarrow\frac{11}{45}\) \(.x=\frac{22}{45}\)

\(\Rightarrow x=\frac{22}{45}:\frac{11}{45}\)

\(\Rightarrow x=2\)