(X-3/2)^3=1/64
(X+3/2)^2=9/49
(2x-3)^2=36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
`(5x+1)=36/49`
`<=> 5x = 36/49-1`
`<=> 5x = -13/49`.
`<=> x = -13/245.`
Vậy `x = -13/245`.
`b, x-2/9 = 2/3`.
`<=> x = 2/3 + 2/9`
`<=> x = 8/9`.
Vậy `x = 8/9`.
c: (8x-1)^(2x+1)=5^(2x+1)
=>8x-1=5
=>8x=6
=>x=3/4
d: Sửa đề: (x-3,5)^2+(y-1/10)^4=0
=>x-3,5=0 và y-0,1=0
=>x=3,5 và y=0,1
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
5, 4\(x^2\) - 36 = 0
4.(\(x^2\) - 9) = 0
\(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}
a) \(\left(2x+3\right).\left(\frac{1}{2}.x-\frac{3}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\\frac{1}{2}.x-\frac{3}{2}=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}2x=-3\\\frac{1}{2}.x=\frac{3}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=\frac{3}{2}:\frac{1}{2}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=3\end{cases}}\)
Vậy x = \(-\frac{3}{2}\) hoặc x = 3
b)\(\left(\frac{1}{2}-x\right)^2=\frac{64}{49}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)^2=\left(\frac{8}{7}\right)^2\) hoặc \(\left(\frac{1}{2}-x\right)^2=\left(-\frac{8}{7}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}-x=\frac{8}{7}\\\frac{1}{2}-x=-\frac{8}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}-\frac{8}{7}\\x=\frac{1}{2}+\frac{8}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{9}{14}\\x=\frac{23}{14}\end{cases}}\)
Vậy x = \(-\frac{9}{14}\) hoặc x = \(\frac{23}{14}\)
c) \(\frac{1}{2}.\left(x-4,5\right)=\frac{3}{4}.x=\frac{5}{12}\) ( câu này mik ko hiểu cho lắm)
k mik nha mn!
Bài 1:
a; (\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\)) x \(\dfrac{3}{4}\) = \(\dfrac{1}{4}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) : \(\dfrac{3}{4}\)
\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) x \(\dfrac{4}{3}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{3}\)
\(\dfrac{1}{4}x\) = \(\dfrac{1}{3}\) + \(\dfrac{1}{8}\)
\(\dfrac{1}{4}\) \(x\)= \(\dfrac{8}{24}\) + \(\dfrac{11}{24}\)
\(\dfrac{1}{4}x=\dfrac{11}{24}\)
\(x=\dfrac{11}{24}:\dfrac{1}{4}\)
\(x=\dfrac{11}{24}\times4\)
\(x=\dfrac{11}{6}\)
b; \(\dfrac{12}{5}:x\) = \(\dfrac{14}{3}\) x \(\dfrac{4}{7}\)
\(\dfrac{12}{5}\) : \(x\) = \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) : \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) x \(\dfrac{3}{8}\)
\(x\) = \(\dfrac{9}{10}\)
a, (2x-3)3 = -64
=> (2x-3)3 = -43
=> 2x-3=-4
=> 2x = -1
=> x = -1 : 2
=> x = -1/2
b, (2x-3)2 =25
=> (2x-3)2 =5^2
=> 2x-3 = 5
=> 2x = 8
=> x = 4
c, (3x-4)2 =36
=> (3x-4)2 =62
=> 3x-4 = 6
=> 3x = 10
=> x = 3.(3)
d, 2x+1 = 64
=> 2x+1 = 26
=> x+1 = 6
=> x = 5
\(\left[x-\frac{3}{2}\right]^3=\frac{1}{64}\)
\(\Leftrightarrow\left[x-\frac{3}{2}\right]^3=\left[\frac{1}{4}\right]^3\)
\(\Leftrightarrow x-\frac{3}{2}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)
\(\left[x+\frac{3}{2}\right]^2=\frac{9}{49}\)
\(\Leftrightarrow\left[x+\frac{3}{2}\right]^2=\left[\frac{3}{7}\right]^2\)
\(\Leftrightarrow x+\frac{3}{2}=\pm\frac{3}{7}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{3}{7}\\x+\frac{3}{2}=-\frac{3}{7}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{15}{14}\\x=-\frac{27}{14}\end{cases}}\)