K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

b: \(x^2+10x+25=\left(x+5\right)^2\)

c: \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

21 tháng 8 2020

ko pt đc nha bạn

21 tháng 8 2020

thanks

NV
16 tháng 11 2021

\(64-x^2-y^2+2xy=64-\left(x^2-2xy+y^2\right)\)

\(=8^2-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\)

16 tháng 11 2021

−(x−y−8)(x−y+8)

21 tháng 10 2021

\(=\left(x-1\right)\left(x-3\right)\)

21 tháng 10 2021

\(=x\left(x-3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x-1\right)\)

17 tháng 1 2021

undefined

30 tháng 9 2017

Ta có: \(6x^2-7x+2=6x^2-3x-4x+2\)

\(=\left(6x^2-3x\right)-\left(4x-2\right)\)

\(=3x\left(2x-1\right)-2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(3x-2\right)\)

1 tháng 9 2015

\(=\left(x^7+x^6+x^5-x^3-x^2\right)-\left(x^6+x^5+x^4-x^2-x\right)+\left(x^5+x^4+x^3-x-1\right)\)

\(=x^2\left(x^5+x^4+x^3-x^2-1\right)-x\left(x^5+x^4+x^3-x-1\right)+\left(x^5+x^4+x^3-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^5+x^4+x^3-x^2-1\right)\)

 

1 tháng 11 2020

Bạn ơi sai đề ko vậy????

1 tháng 11 2020

ko bạn ơi thầy in đề vậy đó

27 tháng 10 2023

Để phân tích đa thức thành nhân tử, ta có thể sử dụng phương pháp phân tích hệ số hoặc sử dụng định lý nhân tử của đa thức. Trong trường hợp này, chúng ta sẽ sử dụng phương pháp phân tích hệ số.

Đa thức: x^4 - 2x^3 + 10x^2 + 9x + 14

Đầu tiên, chúng ta sẽ tìm các ước của hệ số tự do (14). Các ước của 14 là ±1, ±2, ±7 và ±14. Tiếp theo, chúng ta sẽ thử từng ước này vào đa thức để kiểm tra xem có tồn tại nhân tử nào cho đa thức hay không.

Thử với ước 1: 1^4 - 2(1)^3 + 10(1)^2 + 9(1) + 14 = 32

Thử với ước -1: (-1)^4 - 2(-1)^3 + 10(-1)^2 + 9(-1) + 14 = 16

Thử với ước 2: 2^4 - 2(2)^3 + 10(2)^2 + 9(2) + 14 = 58

Thử với ước -2: (-2)^4 - 2(-2)^3 + 10(-2)^2 + 9(-2) + 14 = 10

Thử với ước 7: 7^4 - 2(7)^3 + 10(7)^2 + 9(7) + 14 = 2064

Thử với ước -7: (-7)^4 - 2(-7)^3 + 10(-7)^2 + 9(-7) + 14 = 1288

Thử với ước 14: 14^4 - 2(14)^3 + 10(14)^2 + 9(14) + 14 = 25088

Thử với ước -14: (-14)^4 - 2(-14)^3 + 10(-14)^2 + 9(-14) + 14 = 20096

Dựa vào kết quả trên, ta thấy rằng không có ước nào cho đa thức. Do đó, ta kết luận rằng đa thức x^4 - 2x^3 + 10x^2 + 9x + 14 không thể phân tích thành nhân tử trong trường số thực.