Cho A = 1/1 - 1/2 + 1/3 - ... + 1/2005 - 1/2006
Chứng minh A = 1/1004 + 1/1005 + ... + 1/2006
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=B\left(ĐPCM\right)\)
b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)
\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)
Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006
=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)
=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)
=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)
=>A=1/1004+1/1005+.....+1/2006
Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )
Câu 2a:
Ta có :
\(\frac{1}{101}>\dfrac{1}{150}\)
\(\frac{1}{102}>\dfrac{1}{150}\)
\(....................\)
\(\dfrac{1}{150}=\dfrac{1}{150}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+......+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+......+\dfrac{1}{150}\) ( có 50 số hạng )
\(\Rightarrow A>\dfrac{1}{150}.50\)
\(\Rightarrow A>\dfrac{1}{3}\) ( 1 )
Ta có :
\(\dfrac{1}{101}< \dfrac{1}{100}\)
\(\dfrac{1}{102}< \dfrac{1}{100}\)
\(.................\)
\(\dfrac{1}{150}< \dfrac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+....+\frac{1}{150}< \dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\) ( có 50 số hạng )
\(\Rightarrow A< \dfrac{1}{100}.50\)
\(\Rightarrow A< \dfrac{1}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{1}{3}< A< \dfrac{1}{2}\)
\(\Rightarrow\)Điều phải chứng minh
Câu 2b với 2c tương tự nên mk sẽ làm 2b nha
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\left(đpcm\right)\)
______________________________________________________
Chắc là ý : B
=>A= 1+1/2+1/3+...+1/2006-2*(1/2+1/4+....+1/2006)
=>A=1+1/2+1/3+....+1/2006-(1+1/2+.....+1/1003)
=> A=1/1004+1/1005+.....+1/2006
study well
k nha