Cho 3 số a,b,c khác 0 biết a^2c=b^2a=c^2b
Chứng minh a=b=c
Gấp lắm nhờ mấy nhà toán học giúp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
x/y=y/z=z/x
=> x*z = 2*y = x*y = 2*z
Ta có :
x*z = x*y
=> z=y
Ta có :
x*z = 2*y = y*y
Mà y = z (cmt)
=> x*z = y*z
=>x=y
Mà y = z (cmt)
=> x=y=z
Đề bài : Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(a,b,c\ne0\right)\)và \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
Chứng minh M=3abc.
Trước tiên, ta chứng minh bài toán phụ : Cho x+y+z=0 . Chứng minh \(x^3+y^3+z^3=3xyz\)
Giải bài toán phụ như sau : Ta có : \(x+y+z=0\Rightarrow z=-\left(x+y\right)\Rightarrow z^3=-\left[x^3+y^3+3xy\left(x+y\right)\right]\)
\(\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy\left(-z\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
Áp dụng vào bài đã cho, ta suy ra : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Do đó : \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}=\frac{a^2b^2c^2}{a^3}+\frac{a^2b^2c^2}{b^3}+\frac{a^2b^2c^2}{c^3}=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^2b^2c^2.\frac{3}{abc}=3abc\)Vậy \(M=3abc\)(đpcm)
Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1)
=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)
Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)
Từ (1) có : \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)
Từ (2) ; (3) ; (4) => điều phải chứng minh
đề là \(a^{2c}=b^{2a}=c^{2b}\) hay sao?