Cho P = \(\frac{x+32}{\sqrt{x}+2}\)với \(x\ge0\)
Tìm giá trị nhỏ nhất của P.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/226521237848.html bạn vô đây tham khảo nha
Ta có:
\(P=\frac{x+12}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)
\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)
Dấu "=" xảy ra <=> \(\sqrt{x}+2=\frac{16}{\sqrt{x}+2}\Leftrightarrow\sqrt{x}+2=4\Leftrightarrow x=4\) thỏa mãn
=> min P = 4 tại x = 4.
có thể dùng cách lấy nghiệm của pt bậc 2 ẩn x=t2(t>0) nhé, nhưng dùng cosi cho bn dễ hiểu
\(P=\frac{x+32}{\sqrt{x}+2}=\sqrt{x}-2+\frac{36}{\sqrt{x}+2}\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{36}{\sqrt{x}+2}}-4=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=16\)