Cho x,y thỏa mãn x2—xy—12y2=0
Hãy tính giá trị của A=\(\frac{3x+2y}{3x-2y}\)
Dùng phương pháp tách một hạng tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Từ giả thiết bài toán suy ra
y ≥ 0 x 2 2 ≤ - 2 x 2 + 3 x ⇔ y ≥ 0 5 x 2 - 6 x ≤ 0 ⇔ y ≥ 0 0 ≤ x ≤ 6 5
Ta có
x 2 + y 2 ≤ x 2 + - 2 x 2 + 3 x 2 = 4 x 4 - 12 x 3 + 10 x 2
Ta có f ' x = 4 x x - 1 x - 5
f ' x = 0 x = 0 x = 1 x = 5 So điều kiện, chọn x = 0 ; x = 1 ; f(0); f(1) = 2; f 6 5 = 1224 625
Vậy m a x P = 2
Đáp án D
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))
Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0
=>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0
=> (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0
=> (x-1)2 + (y-1)2 + [(-x+ xy) + (-y+1)] = 0
=> (x-1)2 + (y-1)2 + [ x(y-1) - (y-1)] = 0
=> (x-1)2 + (y-1)2 + (x-1)(y-1) = 0
=> (x-1)2 + 2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0
=> [x-1+1/2(y-1) ]2 + 3/4.(y-1)2 = 0
Vì: [x-1+1/2(y-1) ]2 >= 0 với mọi x;y thuộc R
3/4.(y-1)2 >= 0 với mọi y thuộc R
=> (x-1+1/2y -1/2 = 0) và ( y-1 = 0)
=> (x = 1/2 -1/2y+1) và (y=1)
=> x = y =1
Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.
3x+2y=5 => y = (5-3x)/2
E=xy = x(5-3x)/2
=> 2E=5x-3x2 = -3(x2-5x/3)
=> \(2E=-3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)\)
=> \(2E=\frac{25}{12}-3\left(x-\frac{5}{6}\right)^2\)
Nhận thấy: \(\left(x-\frac{5}{6}\right)^2\ge0\) Với mọi x
=> Giá trị lớn nhất của 2E là 25/12, đạt được khi x=5/6
=> \(E_{min}=\frac{25}{24}\) đạt được khi x=5/6
\(x^2-xy-12y^2=0\)
\(\Leftrightarrow\left(x^2+3xy\right)-\left(4xy-12y^2\right)=0\)
\(\Leftrightarrow x\left(x+3y\right)-4y\left(x+3y\right)=0\)
\(\Leftrightarrow\left(x+3y\right)\left(x-4y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3y\\x=4y\end{cases}}\)
TH1:\(x=-3y\)
\(A=\frac{3\cdot\left(-3y\right)+2y}{3\left(-3y\right)-2y}=\frac{-9y+2y}{-9y-2y}=\frac{-7y}{-11y}=\frac{7}{11}\)
TH2:\(x=4y\)
\(A=\frac{3\cdot4y+2y}{3\cdot4y-2y}=\frac{12y+2y}{12y-2y}=\frac{14y}{10y}=\frac{7}{5}\)