K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

ĐK: \(1\ge x\ge0\)

pt\(\Leftrightarrow\left(13\sqrt{x-x^2}-\frac{26}{5}\right)+\left(9\sqrt{x+x^2}-\frac{54}{5}\right)=0\)

\(\Leftrightarrow13\frac{\left(\sqrt{x-x^2}-\frac{2}{5}\right)\left(\sqrt{x-x^2}+\frac{2}{5}\right)}{\sqrt{x-x^2}+\frac{2}{5}}+9\frac{\left(\sqrt{x+x^2}-\frac{6}{5}\right)\left(\sqrt{x+x^2}+\frac{6}{5}\right)}{\sqrt{x+x^2}+\frac{6}{5}}=0\)

\(\Leftrightarrow13\frac{x-x^2-\frac{4}{25}}{\sqrt{x-x^2}+\frac{2}{5}}+9\frac{x+x^2-\frac{36}{25}}{\sqrt{x+x^2}+\frac{6}{5}}=0\)

\(\Leftrightarrow13\frac{\left(\frac{1}{5}-x\right)\left(x-\frac{4}{5}\right)}{\sqrt{x-x^2}+\frac{2}{5}}+9\frac{\left(x-\frac{4}{5}\right)\left(x+\frac{9}{5}\right)}{\sqrt{x+x^2}+\frac{6}{5}}=0\)

\(\Leftrightarrow\left(x-\frac{4}{5}\right)\left(....\right)=0\)

TH1: \(x=\frac{4}{5}\left(TMĐK\right)\)

TH2:\(\left(....\right)=0\Leftrightarrow x=\frac{4}{5}\)(bạn tự giải nhé, mik đuối sức r)\(\left(tmđk\right)\)

Vậy...

29 tháng 7 2019

um, bạn Ác quỷ gì đó ơi, cho mình hỏi sao chỗ đk có nhỏ hơn hoặc 1 vậy? bạn giải thích giùm mình với, chứ không phải là căn thì lớn hơn hoặc bằng 0 là được rồi hay sao?

31 tháng 12 2020

ĐKXĐ: \(-1\le x\le1\).

Đặt \(x^2=a\left(0\le a\le1\right)\).

PT đã cho được viết lại thành:

\(13\sqrt{a-a^2}+9\sqrt{a+a^2}=16\).

Áp dụng bất đẳng thức AM - GM cho hai số thực không âm ta có:

\(a+4\left(1-a\right)\ge2\sqrt{a.4\left(1-a\right)}\)

\(\Rightarrow\sqrt{a-a^2}\le1-\dfrac{3}{4}a\)

\(\Rightarrow13\sqrt{a-a^2}\le13-\dfrac{39}{4}a\); (1)

\(a+\dfrac{4}{9}\left(a+1\right)\ge2\sqrt{a.\dfrac{4}{9}\left(a+1\right)}\)

\(\Rightarrow\sqrt{a\left(a+1\right)}\le\dfrac{13}{12}a+\dfrac{1}{3}\)

\(\Rightarrow9\sqrt{a+a^2}\le\dfrac{39a}{4}+3\). (2)

Cộng vế với vế của (1), (2) ta có \(13\sqrt{a-a^2}+9\sqrt{a+a^2}\le16\).

Mặt khác từ pt đã cho ta có đẳng thức phải xảy ra.

Do đó đẳng thức ở (1) và (2) cũng xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}a=4\left(1-a\right)\\a=\dfrac{2}{3}\left(1+a\right)\end{matrix}\right.\Leftrightarrow a=\dfrac{4}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{4}{5}}\) (TMĐK).

Vậy...

 

 

20 tháng 10 2017

X=0,894427185

20 tháng 10 2017

tớ bấm máy tính mà

24 tháng 7 2017

Cô hoàn chỉnh lại bài làm trên trang diễn đàn toán học:
\(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16\)
Điều kiện xác định: \(-1\le x\le1\).
Ta có:
\(\left(13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}\right)^2\)
\(=\left(13\left|x\right|\sqrt{1-x^2}+9\left|x\right|\sqrt{1+x^2}\right)^2\)
\(=x^2\left(\sqrt{13}\sqrt{13}\sqrt{1-x^2}+3\sqrt{3}\sqrt{3}\sqrt{1+x^2}\right)^2\) (*)
Áp dụng bất đẳng thức Bu-nhi-a cho \(\sqrt{13}.\sqrt{13}.\sqrt{1-x^2}+3\sqrt{3}.\sqrt{3}.\sqrt{1+x^2}\) ta có:
(*) \(x^2\left(13+27\right)\left(13-13x^2+3+3x^2\right)=40x^2\left(16-10x^2\right)\)
\(=4.10x^2\left(16-10x^2\right)\le4.\left(\dfrac{10x^2+16-10x^2}{2}\right)^2=16\).
Vì vậy \(VT\le VP\) . Dấu bằng xảy ra khi:
\(10x^2=16-10x^2\Leftrightarrow x^2=\dfrac{4}{5}\)\(\Leftrightarrow x=\pm\dfrac{2\sqrt{5}}{5}\).

24 tháng 7 2017

$13\sqrt{x^2-x^4}+9\sqrt{x^2+x^4}=16$ - Các bài toán và vấn đề về PT - HPT - BPT - Diễn đàn Toán học

19 tháng 9 2017

Cc mày

23 tháng 10 2021

\(a,ĐK:-9\le x\le16\\ PT\Leftrightarrow\left(\sqrt{16-x}-3\right)+\left(\sqrt{x+9}-4\right)=0\\ \Leftrightarrow\dfrac{7-x}{\sqrt{16-x}+3}+\dfrac{x-7}{\sqrt{x+9}+4}=0\\ \Leftrightarrow\left(x-7\right)\left(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}=0\end{matrix}\right.\)

Với \(x\ge-9\) thì \(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}>0\)

Do đó PT có nghiệm duy nhất \(x=7\)

23 tháng 10 2021

\(b,ĐK:-\sqrt{2}\le x\le\sqrt{2}\\ PT\Leftrightarrow\left(\sqrt{2-x^2}-1\right)+\left(\sqrt{x^2+8}-3\right)=0\\ \Leftrightarrow\dfrac{1-x^2}{\sqrt{2-x^2}+1}+\dfrac{x^2-1}{\sqrt{x^2+8}+3}=0\\ \Leftrightarrow\left(x^2-1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}=0\end{matrix}\right.\)

Với \(x\ge-\sqrt{2}\) thì \(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}>0\)

Vậy pt có tập nghiệm \(x=\pm1\)