Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)
\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=-1\)
b/
\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)
\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)
\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)
\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)
\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra
c/ ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)
\(\Leftrightarrow\sqrt{x+3}+1=x+4\)
\(\Leftrightarrow x+3-\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
a) ĐKXĐ: x ≤ 3.
+x = + 1 ⇔ x = 1. Tập nghiệm S = {1}.
b) ĐKXĐ: x = 2.
Giá trị x = 2 nghiệm đúng phương trình. Tập nghiệm S = {2}.
c) ĐKXĐ: x > 1.
⇔ = 0
=> x = 3 (nhận vì thỏa mãn ĐKXĐ)
x = -3 (loại vì không thỏa mãn ĐKXĐ).
Tập nghiệm S = {3}.
d) xác định với x ≤ 1, xác định với x ≥ 2.
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
8.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)
\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)
\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)
\(\Leftrightarrow x=6\)
6.
ĐKXD: ...
\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)
\(\Leftrightarrow x=3\)
7.
\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)
\(\Rightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)
\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)
Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)
1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)
\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)
\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)
3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)
\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)
\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)
\(\Rightarrow x=6\)
Answer:
b) \(2\sqrt{x+3}=9x^2-x-4\)
ĐK: x\(x\ge-3\) phương trình tương đương:
Ta có: \(2\sqrt{x+3}=9x^2-x-4\)
\(\Leftrightarrow x+4+2\sqrt{x+3}=9x^2\)
\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)
\(\Leftrightarrow\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}+1=3x\\\sqrt{x+3}+1=-3x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5-\sqrt{97}}{18}\end{cases}}\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
a) \(đkxđ:x\ge-1\)
\(\sqrt{x+1}+x=\sqrt{x+1}+2\Leftrightarrow x=2\left(tm\right)\).
b) đkxđ: \(\)\(\left\{{}\begin{matrix}3-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Thay x = 3 vào phương trình ta có:
\(3-\sqrt{3-3}=\sqrt{3-3}+3\Leftrightarrow3=3\left(tm\right)\)
Vậy x = 3 là nghiệm của phương trình.
c) Đkxđ \(\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\) \(\Leftrightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
d) Đkxđ: \(-x-1\ge0\Leftrightarrow-x\ge1\) \(\Leftrightarrow x\le-1\).
Pt\(\Leftrightarrow x^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy x = -2 là nghiệm của phương trình.
a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)
Phương tình đã cho trở thành:\(y^2+5+y=y+6\)
\(\Leftrightarrow y^2-1=0\)
\(\Leftrightarrow y=-1;y=1\)
y=-1 loại vì \(\sqrt{x=5}\ge0\)
Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)
b,làm tương tự câu a
c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).
b) Đkxđ: \(\left\{{}\begin{matrix}1-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x=1\).
Thay x = 1 vào phương trình ta có:
\(\sqrt{1-1}+1=\sqrt{1-1}+2\)\(\Leftrightarrow1=2\) (vô lý).
Vậy phương trình vô nghiệm.
\(a,ĐK:-9\le x\le16\\ PT\Leftrightarrow\left(\sqrt{16-x}-3\right)+\left(\sqrt{x+9}-4\right)=0\\ \Leftrightarrow\dfrac{7-x}{\sqrt{16-x}+3}+\dfrac{x-7}{\sqrt{x+9}+4}=0\\ \Leftrightarrow\left(x-7\right)\left(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}=0\end{matrix}\right.\)
Với \(x\ge-9\) thì \(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}>0\)
Do đó PT có nghiệm duy nhất \(x=7\)
\(b,ĐK:-\sqrt{2}\le x\le\sqrt{2}\\ PT\Leftrightarrow\left(\sqrt{2-x^2}-1\right)+\left(\sqrt{x^2+8}-3\right)=0\\ \Leftrightarrow\dfrac{1-x^2}{\sqrt{2-x^2}+1}+\dfrac{x^2-1}{\sqrt{x^2+8}+3}=0\\ \Leftrightarrow\left(x^2-1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}=0\end{matrix}\right.\)
Với \(x\ge-\sqrt{2}\) thì \(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}>0\)
Vậy pt có tập nghiệm \(x=\pm1\)