cho a,b,c >0 CMR\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học toán với OnlineMath
ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)
ta lại có tương tự M<2
suy ra Mko ơphair số nguyên
M = a/a+b + b/b+c + c/c+a
M > a/a+b+c + b/a+b+c + c/a+b+c
M > a+b+c/a+b+c
M > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
M = a/a+b + b/b+c + c/c+a
M < a+c/a+b+c + b+c/a+b+c + b+c/a+b+c
M < 2.(a+b+c)/a+b+c
M < 2 (2)
Từ (1) và (2) => 1 < M < 2, không là số nguyên ( đpcm)
*Ta có :
a/a+b > a/a+b+c (1)
b/b+c > b/a+b+c (2)
c/c+a > c/a+b+c (3)
Từ (1); (2) và (3) suy ra:
a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1 (a)
*Ta có công thức:
- Với a; b và c thuộc N* ta có thể rút ra:
a/b < a+c/b+c
Áp dụng công thức trên, ta có:
a/a+b < a+c/a+b+c (4)
b/b+c < b+a/a+b+c (5)
c/c+a < c+b/a+b+c (6)
Từ (4); (5) và (6) suy ra:
a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = a+c+b+a+c+b/a+b+c = 2a+2b+2c/a+b+c = 2(a+b+c)/a+b+c = 2 (b)
Từ (a) và (b) suy ra:
1 < a/a+b + b/b+c + c/c+a < 2
=> 1 < M < 2
=> M không phải là số nguyên.
Vậy M không phải là số nguyên.
Ta có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
> \(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)
Lại có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
< \(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)
Từ (1) và (2) => 1<M<2
=> M không là số tự nhiên
Đặt D= a/(a+b)+b/(b+c)+c/(c+a)
ta có:D>a/(a+b+c)+b/(b+c+a)+c/(c+a+b)=(a+b+c)/(a+b+c)=1 (*)
Mặt khác, ta có: D =( 1 - b/a+b)+(1 - c/b+c)+(1 - a/c+a) < 3-(b/a+b+c + c/b+c+a + a/c+a+b)=3-1=2
=> D<2 (**)
Từ (*);(**) =>1<D<2 nên D ko là số nguyên (đpcm)
xin lỗi bn vì mk ko gõ trong fx được, chỗ nào ko hiểu thì nhắn tin cho mk
đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Ta có: \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)
=>A>1 (1)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\left(1-\frac{b}{a+b}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{c+a}\right)<3-\left(\frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}\right)=3-1=2\)
=>A<2(2)
từ (1);(2)=>1<A<2=> A ko là số nguyên=>đpcm
#)Giải :
Ta có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Lại có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow\) M không phải là số nguyên
Vì a,b,c, > 0 nên
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)(1)
\(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{a+b}{a+b+c}\)(2)
\(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)(3)
Cộng từng vế của (1), (2), (3) suy ra \(1< M< 2\)
Vậy M không là số nguyên