\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

M = a/a+b + b/b+c + c/c+a

M > a/a+b+c + b/a+b+c + c/a+b+c

M > a+b+c/a+b+c

M > 1 (1)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

M = a/a+b + b/b+c + c/c+a

M < a+c/a+b+c + b+c/a+b+c + b+c/a+b+c

M < 2.(a+b+c)/a+b+c

M < 2 (2)

Từ (1) và (2) => 1 < M < 2, không là số nguyên ( đpcm)

23 tháng 8 2016

*Ta có :

 a/a+b > a/a+b+c (1)

 b/b+c > b/a+b+c (2)

 c/c+a > c/a+b+c (3)

Từ (1); (2) và (3) suy ra:

 a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1 (a)

*Ta có công thức: 

 - Với a; b và c thuộc N* ta có thể rút ra:

 a/b < a+c/b+c

 Áp dụng công thức trên, ta có:

 a/a+b < a+c/a+b+c (4)

 b/b+c < b+a/a+b+c (5)

 c/c+a < c+b/a+b+c (6)

Từ (4); (5) và (6) suy ra:

 a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = a+c+b+a+c+b/a+b+c = 2a+2b+2c/a+b+c = 2(a+b+c)/a+b+c = 2 (b)

Từ (a) và (b) suy ra:

 1 < a/a+b + b/b+c + c/c+a < 2

=> 1 < M < 2

=> M không phải là số nguyên.

Vậy M không phải là số nguyên.

   

   

17 tháng 9 2020

Với a,b,c,d là các số nguyên dương ta luôn có :

\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

Cộng vế với vế ta được :

\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)

Do đó , S không là số tự nhiên.

20 tháng 9 2020

\(\frac{d}{ưưda}ư\)

28 tháng 7 2019

#)Giải :

Ta có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Lại có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow\) M không phải là số nguyên 

28 tháng 7 2019

Vì a,b,c, > 0 nên

\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)(1)

\(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{a+b}{a+b+c}\)(2)

\(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)(3)

Cộng từng vế của (1), (2), (3) suy ra \(1< M< 2\)

Vậy M không là số nguyên

28 tháng 8 2018

ban vào link này nhé 

https://olm.vn/hoi-dap/question/109536.html

11 tháng 6 2017

Xét đề bài , ta thấy :

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

Vậy ,  \(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>1\)

mặt khác , ta lại có :

\(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(=\left(\frac{a}{d+b+c}+\frac{c}{c+d+a}\right)+\left(\frac{b}{b+c+d}+\frac{d}{d+a+b}\right)\)

Mà \(\frac{a}{b+c+d}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=1\)

\(\frac{b}{b+c+d}+\frac{d}{d+a+c}< \frac{b}{b+d}+\frac{d}{d+b}=1\)

=> \(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)

Vậy . . . 

29 tháng 5 2017

Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

Lại có: \(\frac{a}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{b}{c+a}< \frac{b+c}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+a}{a+b+c}\)

\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)

Từ (1);(2) => 1 < M < 2 => đpcm

31 tháng 10 2016

Ta có:

\(\frac{a}{a+b}\)>\(\frac{a}{a+b+c}\)

\(\frac{b}{b+c}\)>\(\frac{b}{a+b+c}\)

\(\frac{c}{c+a}\)>\(\frac{c}{a+b+c}\)

Cộng theo vế ,ta được:

\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\)>\(\frac{a}{a+b+c}\)+\(\frac{b}{a+b+c}\)+\(\frac{c}{a+b+c}\)

=> M> \(\frac{a+b+c}{a+b+c}\)=1

=> M>1 (1)

Ta lại có:

\(\frac{a}{a+b}\)<\(\frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}\)<\(\frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}\)<\(\frac{c+b}{a+b+c}\)

Cộng theo vế,ta được:

\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\)<\(\frac{a+c}{a+b+c}\)+\(\frac{b+a}{a+b+c}\)+\(\frac{c+a}{a+b+c}\)

=> M<\(\frac{a+c+b+a+c+b}{a+b+c}\)=\(\frac{2a+2b+2c}{a+b+c}\)=2

=> M<2 (2)

Từ (1) và (2) => 1<M<2.

=> M không phải là số nguyên (đpcm)

6 tháng 11 2016

Ta có: M=(a/a+b)+(b/b+c)+(c/c+a)=(a+b+c)/(a+b+b+c+c+a)=(a+b+c)/2(a+b+c)=1/2

=>M=1/2,mà 1/2 không thuôc Z

Vậy M không phải là số nguyên

30 tháng 12 2015

tick tui cái đi công chúa

30 tháng 12 2015

mẹ thằng cu HẢi, kiếm chuyện à

6 tháng 6 2018

Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học toán với OnlineMath

9 tháng 8 2016

Gọi số dư của a và b khi chia m là n 

Ta có: a=m*k+n 

          b=m*h+n

=>a-b=m*k+n -(m*h+n)

=m*k+n-m*h-n

=(m*k-m*h)+(n-n)

=m(k-h) luôn chia hết m

Đpcm 

9 tháng 8 2016

là dấu nhân đó