Tìm n để 18n+3 và 21n+7 là 2 số nguyên tố cùng nhau. Giúp mình với, mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 18n + 3 và 21n +7 cùng chia hết cho số nguyên tố d.
Ta có : 6(21n + 7) - 7( 18n +3) chia hết d \(\Rightarrow\)= 21 chia hết cho d. Vậy d \(\in\){ 3;7}. Hiển nhiên d \(\ne\)3.
Vì 21n + 7 ko chia hết cho 3
Để (18n + 3,21n +7) = 1 thì d \(\ne\)7 tức là 18n + 3 ko chia hết cho 7 ( ta luôn có 21n + 7 chia hết cho 7 ) nếu 18n + 3 - 21 ko chia hết cho 7 \(\Leftrightarrow\) 18(n - 1) ko chia hết cho 7 \(\Leftrightarrow\) n - 1 ko chia hết cho 7 \(\Leftrightarrow\)n \(\ne7k\) + 1 ( k \(\in\)N).
Kết luận : với n \(\ne\)7k + 1( k \(\in\)N) thì 18n + 3 và 21n +7 là hai số nguyên tố cùng nhau.
1, Gọi ƯCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d
4n + 8 chia hết cho d
=> 4n + 8 - (4n + 6) chia hết cho d
=> (4n - 4n) + (8 - 6) chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Mà 2n + 3 là số lẻ và 2n + 3 chia hết cho d => d lẻ
=> d = 1
=> ƯCLN(2n + 3; 4n + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
Gọi d là UCLN(18n+3,21n+7)
\(\Rightarrow\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}\left(18n+3\right):3⋮d\\\left(21n+7\right):7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+1⋮d\\6n+2⋮d\end{cases}}}\)
Vì 6n+1,6n+2 là hai số tự nhiên liên tiếp nên d=1
=> 18n+3 và 21n+7 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Lời giải:
Gọi $d=ƯCLN(18n+3, 21n+7)$
$\Rightarrow 18n+3=3(6n+1)$ và $21n+7=7(3n+1)$ cùng chia hết cho $d$
Để phân số rút gọn được, tức là $3(6n+1)$ và $7(3n+1)$ phải cùng chia hết cho 1 số $d>1$
Mà $(3,7)=1$ nên $6n+1\vdots d$ và $3n+1\vdots d$
$\Rightarrow 2(3n+1)-(6n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(18n+3, 21n+7)=1$, tức là không tồn tại $n$ tự nhiên để phân số có thể rút gọn.