K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

cái nàyt nghĩ chỉ có cách quy đồng rồi chứng minh BĐT luôn đúng thôi bạn!

^_^

a^2/b+b^2/a>=a+b

=>a^3+b^3>=ab(a+b)

=>a^3+b^3-a^2b-ab^2>=0

=>a^2(a-b)+b^2(b-a)>=0

=>(a-b)^2(a+b)>=0(luôn đúng)

28 tháng 7 2018

Ta có: a/(a+b) > a/(a+b+c) 

b/(b+c) > b/(b+c+a) 

c/(c+a) > c/(c+a+b)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1

Lại có: a/(a+b) < (a+b)/(a+b+c) 

b/(b+c) < (b+c)/(b+c+a) 

c/(c+a) < (c+a)/(c+a+b)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)

=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2 

Vậy .....

17 tháng 5 2020

=))hihihi

5 tháng 3 2018

 \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(ĐK: a , b ,c > 0)

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{b}{a+b+c}>\frac{a+b+c}{a+b+c}=1\)   (1)

Áp dụng BĐT: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (ĐK: a,b,c thuộc N*).Ta thấy:

\(\left(a+b\right)< \frac{\left(a+b\right)}{a+b+c}\)

\(\left(b+c\right)< \frac{\left(b+a\right)}{a+b+c}\)

\(\left(c+a\right)< \frac{\left(c+b\right)}{a+b+c}\)

Cộng các vế lại. Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{\left(a+b\right)}{a+b+c}+\frac{\left(b+a\right)}{a+b+c}+\frac{\left(c+b\right)}{a+b+c}< \frac{2.\left(a+b+c\right)}{a+b+c}=2\) (2)

Từ (1) và (2), suy ra ĐPCM

5 tháng 7 2018

Điều kiện x ≠ 1 và x  ≠  - 1

Ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Biểu thức dương khi x 2 + 2 x + 3 > 0

Ta có:  x 2 + 2 x + 3  =  x 2 + 2 x + 1 + 2  = x + 1 2 + 2 > 0 với mọi giá trị của x.

Vậy giá trị của biểu thức dương với mọi giá trị x  ≠  1 và x  ≠  - 1

5 tháng 8 2020

Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333

BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)

<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

=> Ta có điều phải chứng minh.

5 tháng 8 2020

Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:

\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.

\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.

\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)

lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)

Dấu ''='' xảy ra khi a=b=c

22 tháng 11 2016

Xét BĐT phụ  \(\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\)\(\Leftrightarrow b\left(a-b\right)^2\ge0\)

Tương tự ta có:

\(\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2};\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2};\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\)

Cộng lại theo vế ta có:

\(VT\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}\)

\(=\frac{2a-b+2b-c+2c-d+2d-a}{2}=\frac{a+b+c+d}{2}\)

Vậy BĐT đc chứng minh

20 tháng 8 2016

Ta có:

n3 + 11n

= n3 - n + 12n

= n.(n2 - 1) + 12n

= n.(n - 1).(n + 1) + 12n

= (n - 1).n.(n + 1) + 12n

Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3

Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6

=> n3 + 11n chia hết cho 6 ( đpcm)