Chứng minh rằng với mọi a, b, c dương ta có;
\(\Sigma_{cyc}\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}\le\frac{6}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái nàyt nghĩ chỉ có cách quy đồng rồi chứng minh BĐT luôn đúng thôi bạn!
^_^
a^2/b+b^2/a>=a+b
=>a^3+b^3>=ab(a+b)
=>a^3+b^3-a^2b-ab^2>=0
=>a^2(a-b)+b^2(b-a)>=0
=>(a-b)^2(a+b)>=0(luôn đúng)
Ta có: a/(a+b) > a/(a+b+c)
b/(b+c) > b/(b+c+a)
c/(c+a) > c/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1
Lại có: a/(a+b) < (a+b)/(a+b+c)
b/(b+c) < (b+c)/(b+c+a)
c/(c+a) < (c+a)/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2
Vậy .....
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)(ĐK: a , b ,c > 0)
Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{b}{a+b+c}>\frac{a+b+c}{a+b+c}=1\) (1)
Áp dụng BĐT: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\) (ĐK: a,b,c thuộc N*).Ta thấy:
\(\left(a+b\right)< \frac{\left(a+b\right)}{a+b+c}\)
\(\left(b+c\right)< \frac{\left(b+a\right)}{a+b+c}\)
\(\left(c+a\right)< \frac{\left(c+b\right)}{a+b+c}\)
Cộng các vế lại. Ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{\left(a+b\right)}{a+b+c}+\frac{\left(b+a\right)}{a+b+c}+\frac{\left(c+b\right)}{a+b+c}< \frac{2.\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1) và (2), suy ra ĐPCM
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1
Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333
BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)
<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
=> Ta có điều phải chứng minh.
Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:
\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.
\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.
\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)
lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)
Dấu ''='' xảy ra khi a=b=c
Xét BĐT phụ \(\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\)\(\Leftrightarrow b\left(a-b\right)^2\ge0\)
Tương tự ta có:
\(\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2};\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2};\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\)
Cộng lại theo vế ta có:
\(VT\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}\)
\(=\frac{2a-b+2b-c+2c-d+2d-a}{2}=\frac{a+b+c+d}{2}\)
Vậy BĐT đc chứng minh
Ta có:
n3 + 11n
= n3 - n + 12n
= n.(n2 - 1) + 12n
= n.(n - 1).(n + 1) + 12n
= (n - 1).n.(n + 1) + 12n
Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3
Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6
=> n3 + 11n chia hết cho 6 ( đpcm)