Tìm GTNN :
a) A=
\(2x+3 \sqrt{x}-28\)
b)\(D=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)
\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)
\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)
\(B=2x+3\sqrt{x}-28\)
Ta có điều kiện: \(x\ge0\)
Do đó \(B\ge2\cdot0+3\cdot0-28=-28\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(C=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)
\(C=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)
Áp dụng bất đẳng thức Cô-si :
\(C\ge2\sqrt{\frac{2011\sqrt{x}}{\sqrt{x}}}-2=2\sqrt{2011}-2\)
Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\)
Trả lời:
a, \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-3}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) \(\left(đkxđ:x\ge0;x\ne9\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)
\(=\frac{x-3\sqrt{x}}{x-9}+\frac{2x+3\sqrt{x}-9}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)
\(=\frac{x-3\sqrt{x}+2x+3\sqrt{x}-9-2x+\sqrt{x}+3}{x-9}\)
\(=\frac{x+\sqrt{x}-6}{x-9}\)
a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)
\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
Vậy Min(A) = 1 khi x = -1/2
b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy Min(B) = \(\sqrt{3}\) khi x = 1
\(b,ĐKXĐ:x>0\)
\(D=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Áp dụng bđt Cauchy cho 2 số dương \(2011\sqrt{x}\)và\(\frac{1}{\sqrt{x}}\)ta được:
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}.\frac{1}{\sqrt{x}}}\)
\(\Leftrightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{2011}-2\)
\(\Leftrightarrow D\ge2\sqrt{2011}-2\)
Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\left(TMĐK\right)\)