\(\sqrt{4x^2+4x+2}\)

b) B = \(\sqrt{2x^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)

\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy Min(A) = 1 khi x = -1/2

b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(B) = \(\sqrt{3}\) khi x = 1

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

20 tháng 7 2019

a) Do VT >=0 nên VP >=0 nên \(x\ge4\)

\(PT\Leftrightarrow\left(x-2\right)-\sqrt{x-2}-2=0\)

Đặt \(\sqrt{x-2}=t\ge\sqrt{4-2}=\sqrt{2}\) thì \(t^2-t-2=0\)

\(\Leftrightarrow t=2\left(loại t = -1 vì nó không thỏa mãn đk\right)\Leftrightarrow x-2=4\Leftrightarrow x=6\)

20 tháng 7 2019

b) (sai thì thôi nha) Dễ thấy x = 4 là một nghiệm

Xét x khác 4:ĐK: \(x>4\)(1) . Mặt khác do VT > 0 nên VP > 0 suy ra x < 4(2)

Do x không thể đồng thời thỏa mãn (1) và (2) nên vô nghiệm.

Vậy x = 4

25 tháng 7 2018

c, Ta có: \(C^2=x^2+4x+4+1=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0\Rightarrow C^2\ge1\Rightarrow C\ge1\)

Dấu ''='' xảy ra khi x=-2

Vậy...

câu d,e bình lên là ra ,tương tự câu này nhé.

25 tháng 7 2018

d, Ta có: \(\sqrt{x+2}\ge0\) \(\Rightarrow D\ge1\)

Dấu ''='' xảy ra khi x=-2.

Vậy ....

e, \(E^2=x^2+1\ge1\Rightarrow E\ge1\)

Dấu ''='' xảy ra khi x=0

Vậy .....

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

19 tháng 9 2019

4.a)\(x-2\sqrt{x}+3\)

\(=x-2\sqrt{x}+1+2\)

\(=\left(\sqrt{x}-1\right)^2+2\)

\(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)

\(\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

b)Ta có:

\(x-4\sqrt{y}+13\ge0\)

\(\Leftrightarrow x-4\sqrt{y}\ge-13\)

Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)

Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)

c)Ta có:

\(2x-4\sqrt{y}+6\ge0\)

\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)

\(\Leftrightarrow x-2\sqrt{y}\ge-3\)

Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)

Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)

d)Ta có:

\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)

\(\left(x+1\right)^2\ge0,\forall x\)

\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)

\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)

Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)

19 tháng 9 2019

zài zậy