Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,ĐKXĐ:x>0\)
\(D=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Áp dụng bđt Cauchy cho 2 số dương \(2011\sqrt{x}\)và\(\frac{1}{\sqrt{x}}\)ta được:
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}.\frac{1}{\sqrt{x}}}\)
\(\Leftrightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{2011}-2\)
\(\Leftrightarrow D\ge2\sqrt{2011}-2\)
Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\left(TMĐK\right)\)
\(A=\frac{2a-3\sqrt{a}-2}{\sqrt{a}-2}\\ =\frac{2a-4\sqrt{a}+\sqrt{a}-2}{\sqrt{a}-2}\\ =\frac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\\ =2\sqrt{a}+1\)
a, \(ĐK:x\ge1\\ taco:\sqrt{x-1}\ge0=>\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\)
dấu bằng xảy ra khi x=1
b, dùng hằng đẳng thức a^2 + 2ab +b^2 = (a+b)^2 nhé !
c, câu c cũng như câu b
biểu thức chứa căn có nghiêm khi biểu thức trong căn được xác định và nó lớn hơn hoặc bằng 0
a) x\(\ge\)\(\frac{3}{4}\)
b) \(x\le\frac{3}{4}\)
c) mẫu khác 0 biểu thức trong căn xác định. khi đó đk của mẫu x\(\ne\)-1 và x\(\ne\)1 (1)
xét : \(\frac{1}{1-x^2}\ge0\)
<=> \(1\ge x^2\)
<=> \(-1\le x\le1\) (2)
từ (1) và (2) => biểu thức có nghiệm khi -1<x<1
d) nhận thấy 1+x2 luôn lớn hơn hoặc bằng 1 với mọi x ( hay mẫu khác 0)
=> biểu thức luôn có nghiệm với mọi x ( vô số nghiệm)
c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)
Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)
\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)
Đế C' nguyên thì a + 1 là ước của 1
\(\Rightarrow a=0\)
\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)
\(\Rightarrow x=\frac{9}{4}\left(l\right)\)
Vậy không có x.
Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks
a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\frac{1}{3-2\sqrt{x}}\)
Câu b, c tự làm nhé
\(B=2x+3\sqrt{x}-28\)
Ta có điều kiện: \(x\ge0\)
Do đó \(B\ge2\cdot0+3\cdot0-28=-28\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(C=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)
\(C=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)
Áp dụng bất đẳng thức Cô-si :
\(C\ge2\sqrt{\frac{2011\sqrt{x}}{\sqrt{x}}}-2=2\sqrt{2011}-2\)
Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\)