K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

\(\sqrt{x+2}\ge0\left(voimoix\right)=>\sqrt{x+2}+\frac{3}{11}\ge\frac{3}{11}\left(voimoix\right)\)

=>\(B_{max}=\frac{3}{11}\)

dấu "=" xảy ra

<=>x=0

vậy.....

6 tháng 10 2021

1) a) x<=11/2

b) x>=2

c) x#0

d) x>7

 

6 tháng 10 2021

\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)

12 tháng 11 2019

1/ Không mất tính tổng quát, giả sử \(a\ge b\ge c\text{ và }x\ge y\ge z\)

Ta sẽ chứng minh \(ax+by+cz\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)\)(Thấy giông giống BĐT Chebyshev nhưng không biết có phải không nên ko dám áp dụng, chứng minh cho chắc:D)

\(\Leftrightarrow3ax+3by+3cz\ge\left(a+b+c\right)\left(x+y+z\right)\)

\(\Leftrightarrow2\left(ax+by+cz\right)\ge a\left(y+z\right)+b\left(z+x\right)+c\left(x+y\right)\)

\(\Leftrightarrow\left(2x-y-z\right)a+\left(2y-z-x\right)b+\left(2z-x-y\right)c\ge0\)

\(\Leftrightarrow\left(2x-y-z\right)a-\left[\left(2x-y-z\right)+\left(2z-x-y\right)\right]b+\left(2z-x-y\right)c\ge0\)

\(\Leftrightarrow\left(2x-y-z\right)\left(a-b\right)+\left(2z-x-y\right)\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(a-b\right)+\left(x-z\right)\left(a-c\right)+\left(y-z\right)\left(b-c\right)\ge0\) (Đúng do giả sử)

Như vậy: \(VT\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}\)

\(\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\frac{\left(a+b+c\right)^2\left(x+y+z\right)^2}{9}}=\frac{2}{3}\left(a+b+c\right)\left(x+y+z\right)=VP\)

Ta có đpcm.

Is that true? Em không chắc ở cái bổ đề ban đầu, khi biến đổi có thể làm lộn, nhưng em lại ngại làm kỹ nên em đã làm tắt:v

13 tháng 11 2019

Bài 1 nếu tự nhiên ép \(x\ge y\ge z \) đồng thời\(a\ge b \ge c\) thì lời giải rất vô duyên. Có thể làm cách khá như sau

Nếu đặt \(t=\sqrt{\frac{x^2+y^2+z^2}{a^2+b^2+c^2}}\) và giả sử \(\left(x,y,z\right)=\left(tp,tq,tr\right)\) thì ta có \(a^2+b^2+c^2=p^2+q^2+r^2\)

Khi đó cần cm \(ap+bq+cr+a^2+b^2+c^2\ge\frac{2}{3}\left(a+b+c\right)\left(p+q+r\right)\)

\(\Leftrightarrow\frac{4}{3}\left(a+b+c\right)\left(p+q+r\right)\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2\left(\text{*}\right)\)

Dùng bdt \(ab\le\frac{\left(a+b\right)^2}{4}\) và \(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\) ta có:

\(VT\left(\text{*}\right)\le\frac{\left(a+b+c+p+q+r\right)^2}{3}\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2=VP\left(\text{*}\right)\)

15 tháng 4 2019

a,<=>\(\frac{\left(2x+1\right)^2}{4}\)+\(\frac{2\left(2x-1\right)^2}{4}\)\(\frac{12\left(x+5\right)^2}{4}\)

<=>4x2+4x+1+2(4x2-4x+1)≥12(x2+10x+25)

<=>4x2+4x+1+8x2-8x+2≥12x2+120x+300

<=>4x2+4x+1+8x2-8x+2-12x2-120x-300≥0

<=>-124x-297≥0

<=>124x+297≤0

<=>124x≤-297

<=>x≤\(\frac{-297}{124}\)

15 tháng 4 2019

b, Tương tự câu a

c, |5−3x|=2+x

TH1: 5-3x=2+x

<=> -3x - x = 2 - 5

<=> -4x = -3

<=> x = 3/4

TH2: 5-3x = -2 - x

<=> -3x + x = -2 - 5

<=> -2x = -7

<=> x = 7/2

19 tháng 12 2016

a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)

\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)

\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)

\(=\frac{a-b}{b+c}\)

19 tháng 12 2016

Sửa lại: \(\frac{a-c}{b+c}\)

21 tháng 1 2016

bài lớp 10 bất đẳng thức mấy chú k hiểu là đúng r -______-''

21 tháng 1 2016

hc o nha cho đó mk dg hc chi vaxma tốc độ

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

1 tháng 5 2019

Giải phương trình và bất phương trình

a)\(\frac{2x-1}{6}-x-3=\frac{3-2\left(x+5\right)}{4}\)

<=>\(\frac{2\left(2x-1\right)}{12}-\frac{12x}{12}-\frac{36}{12}=\frac{9-6\left(x+5\right)}{12}\)

<=>4x-2-12x-36=9-6x-30

<=>-2x= 17

<=>x=-8,5

Vậy S={-8,5}

b)\(\left|x-4\right|+3=-3x-21\)(*)

Ta có |x-4|=x-4 khi x-4≥0 <=> x≥4

khi đó (*) tạo thành x-4+3=-3x-21

<=>4x=-20

<=>x=-5(ktm)

Ta có |x-4|=-x+4 khi x-4<0<=>x<4

Khi đó (*) tạo thành -x+4+3=-3x-21

<=>2x=-28

<=>x=-14(tm)

vậy S={-14}

c)\(\frac{x-1}{2}-\frac{x-2}{3}lớnhonhoac=x-\frac{x-3}{4}\)

<=>\(\frac{6\left(x-1\right)}{12}-\frac{4\left(x-2\right)}{12}lonhonhoacbang\:\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\)

<=>6x-6-4x+8≥12x-3x+9

<=>-7x≥7

<=>x≤-1

Vậy S={x/x≤-1}

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)