K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)

\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)

18 tháng 8 2020

\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)

\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)

Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)

Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)

Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)

Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

10 tháng 8 2017

\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

26 tháng 9 2016

1) Tập xác định Mọi \(x\ge1\)
Vậy \(\sqrt{3x}-\sqrt{x+1}=\sqrt{2x+3}-\sqrt{2x-2}\)

Bình phương 2 vế rút gọn được \(x^2-x-6=0\)

\(\Rightarrow\)\(x=3\)

2) Điều kiện xác định là \(\hept{\begin{cases}x-\frac{1}{4}\ge0\\2-2x\ge0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{4}\le x\le1\)

Đặt \(\sqrt{x-\frac{1}{4}}=U\)\(\Rightarrow x=U^2+\frac{1}{4}\) Với điều kiện xác đinh trên thì \(U\ge0\) , thay vào phương trình gốc được

\(2\left(U^2+\frac{1}{4}\right)+\sqrt{U^2+\frac{1}{4}+U}-2=0\)

\(\Leftrightarrow2U^2+\sqrt{\left(U+\frac{1}{2}\right)^2}-\frac{3}{2}=0\)

\(\Leftrightarrow2U^2+\left(U+\frac{1}{2}\right)-\frac{3}{2}=0\)

Đến đây quá đơn giản vì đây là pt bậc 2 bình thường , kết hợp điều kiện xác định giải ta được

\(U=\frac{1}{2}\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

25 tháng 7 2019

Đặt \(\sqrt{\frac{3x-1}{x}}=a\)

\(pt\Leftrightarrow2a=\frac{1}{a^2}+1\)

\(\Leftrightarrow\frac{1}{a^2}-2a+1=0\)

\(\Leftrightarrow\frac{-2a^3+a^2+1}{a^2}=0\)

\(\Leftrightarrow-2a^3+a^2+1=0\)

\(\Leftrightarrow-2a^3+2a^2-a^2+a-a+1=0\)

\(\Leftrightarrow-2a^2\left(a-1\right)-a\left(a-1\right)-\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(-2a^2-a-1\right)=0\)

Dễ chứng minh \(-2a^2-a-1< 0\forall a\)

\(\Rightarrow a-1=0\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow\sqrt{\frac{3x-1}{x}}=1\)

\(\Leftrightarrow3x-1=x\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy....

25 tháng 7 2019

Đặt \(\sqrt{\frac{2x}{x-1}}=a\)

\(pt\Leftrightarrow3a+\frac{4}{a}=\frac{3}{a^2}+10\)

\(\Leftrightarrow\frac{3}{a^2}-\frac{4}{a}-3a+10=0\)

\(\Leftrightarrow\frac{-3a^3+10a^2-4a+3}{a^2}=0\)

\(\Leftrightarrow-3a^3+10a^2-4a+3=0\)

Giải pt ta được \(a=3\)

\(\Leftrightarrow\sqrt{\frac{2x}{x-1}}=3\)

\(\Leftrightarrow\frac{2x}{x-1}=9\)

\(\Leftrightarrow x=\frac{9}{7}\)

Vậy...