Cho các số nguyên a,b,c thỏa mãn ab( a- b) + ca( c - a)= a+ b+ c. Cmr: a+ b+ c chia hết cho 27
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CT
0
T
0
NM
Nguyễn Minh Quang
Giáo viên
17 tháng 12 2020
Giải như sau:
TH1: a, b, c có các số dư khác nhau khi chia cho 3
Suy ra a+b+c chia hết cho 3 trong khi đó (a-b)(b-c)(c-a) không chia hết cho 3 (do cả 3 số ta đã giả sừ không có 2 số nào có cùng số dư)
TH2: a, b, c đều có cùng số dư khi chia 3 suy ra mọi việc xong vì khi đó (a-b)(b-c)(c-a) chia hết cho 27 suy ra a+b+c chia hết cho 27 (dpcm).
Th3: a, b, c chì tồn tại duy nhất 1 cặp có cùng số dư chia cô 3 (vì nếu tồn tại 2 cặp thì 3 số sẽ cùng số dư quay về TH2)
(1) Suy ra a+b+c không chia hết cho 3 suy ra vô lý vì (a-b)(b-c)(c-a) có một số chia hết cho 3
(do (1)) Tóm lại chì có TH2 được nhận hay a+b+c chia hết cho 27
bài này ở đâu vậy bạn