Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$
$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$
$\Rightarrow (a+b+c+d)^2\vdots 2$
$\Rightarrow a+b+c+d\vdots 2$
Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$
Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)
\(a^3+b^3=2021c^3\\ \Leftrightarrow a^3+b^3+c^3=2022c^3⋮6\left(2022⋮6\right)\left(1\right)\)
Mặt khác: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)\)
Có \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) là 3 cặp số nguyên liên tiếp nên chia hết cho 6
Do đó \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
Kết hợp (1) ta được đpcm
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
ap dung tinh chat ti le thuc ta co a/a+2b=b/b+2c+=c/c+2a=a+b+c/a+2b+b+2c+c+2a=1/3
do đóa/a+2b=b/b+2c=c/c+2a=1/3
hay a chia 3 = a+2b
b chia 3 =b+2c
c chia 3 =c+2a
ma a,b,c la cac so nguyen duong nen a,b,c chia het cho 3
nen a+b+c chia het 3
Bài làm:
Ta có: \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Xét: \(\frac{a}{a+2b}=\frac{1}{3}\Leftrightarrow3a=a+2b\Leftrightarrow2a=2b\Rightarrow a=b\)
Tương tự xét các phân thức còn lại ta chứng minh được: \(a=b=c\)
Thay \(\hept{\begin{cases}b=a\\c=a\end{cases}}\)ta được \(a+b+c=3a⋮3\)
\(\Rightarrow a+b+c⋮3\)
+) Ta có: 1 số chia 5 có số dư là: 0; 1; 2; 3; 4
=> 1 số chính phương chia 5 sẽ có số dư là: 0; 1; 4
=> Lũy thừa bậc 4 của 1 số tự nhiên chia 5 sẽ có số dư là: 0; 1
=> các số \(a^4;b^4;c^4\) chia cho 5 sẽ có bộ 3 số dư là: 0; 0; 0 hoặc 1;1;1 hoặc 1; 0; 0 hoặc 1; 1; 0
Nếu \(a^4;b^4;c^4\)chia cho 5 sẽ có bộ 3 số dư là: 1;1;1 hoặc 1; 1; 0
=> \(a^4+b^4+c^4\)chia cho 5 có số dư là 3 hoặc 2 vô lí vì \(a^4+b^4+c^4\) là một số chinh phương chia 5 dư 0; 1; 4
Do đó tồn tại 2 số trong 3 số chia cho 5 dư 0 hay chia hết cho 5
=> Giả sử đó là \(a^4⋮5\) và \(b^4⋮5\) => \(a,b⋮5\)=> \(abc⋮25\)(1)
+) Xét các trường hợp chẵn lẻ: nhận xét: Số chính phương chẵn chia 8 dư 0 hoặc 4; Số chính phương lẻ chia 8 dư 1
=> Lũy thừa bậc 4 của 1 số tự nhiên chẵn chia hết cho 8; Lũy thừa bậc 4 của 1 số tự nhiên lẻ chia 8 dư 1
Nếu a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 3 loại
Nếu 2 trong 3 số a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 2 loại
=> Tồn tại 2 trong 3 số a, b, c là số chẵn
=> \(abc⋮4\)(2)
từ (1); (2) và (4;25) = 1; 4.25=100
=> \(abc⋮100\)
1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)
\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)
Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)
\(\Rightarrow2abc⋮4\)
Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)
\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)
Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)