tìm x,y là stn biết :
a. x2n +y2n = 0
b. (x-2)2 +(y-3)2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
D = x ( x 2 n - 1 + y ) – y ( x + y 2 n - 1 ) + y 2 n – x 2 n + 5
= x . x 2 n - 1 + x . y – y . x – y . y 2 n - 1 + y 2 n – x 2 n + 5
= x 2 n + x y – x y – y 2 n + y 2 n – x 2 n + 5
= ( x 2 n – x 2 n ) + ( x y – x y ) + ( y 2 n – y 2 n ) + 5
= 0 + 0 + 0 + 5 = 5
Đáp án cần chọn là: D
(2x+1)(y-3)=12
Vì x;y là số tự nhiên => 2x+1;y-3 là số tự nhiên
=> 2x+1;y-3 E Ư(12)
Ta có bảng:
2x+1 | 1 | 12 | 3 | 4 | 2 | 6 |
y-3 | 12 | 1 | 4 | 3 | 6 | 2 |
x | 0 | 11/2 (loại) | 1 | 3/2(loại) | 1/2(loại) | 5/2(loại) |
y | 15 | 4 | 7 | 6 | 9 | 5 |
Vậy cặp số tự nhiên (x;y) cần tìm là: (0;15) ; (1;7)
(2x + 1)(y - 3) = 12
=> 2x + 1;y - 3 thuộc Ư(12)
vì x là stn => 2x + 1 là stn, ta có bảng
2x+1 | 1 | 12 | 2 | 6 | 3 | 4 |
y-3 | 12 | 1 | 6 | 2 | 4 | 3 |
x | 0 | loại | loại | loại | 1 | loại |
y | 15 | 7 |
Bài 1) ĐK : \(x,y\in N\)
a) \(2^{x+1}\cdot3^y=12\Leftrightarrow2^{x+1}\cdot3^y=2^2\cdot3\Rightarrow\hept{\begin{cases}x+1=2\\y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}.}\)(thoả mãn đ/k đề)
Vậy x = 1 và y = 3
b) \(\frac{10^x}{5^y}=20^y\Leftrightarrow\left(\frac{10}{5}\right)^y=\left(2^{10}\right)^y\Leftrightarrow2^y=2^{10y}\Leftrightarrow y=10y\Leftrightarrow9y=0\Leftrightarrow y=0\)(thoả mãn đ/k đề)
Vậy y = 0
(* Lưu ý: Từ chỗ y = 10y chuyển vế để nhận nghiệm y = 0, nếu chia ra sẽ có 1 = 10 (vô lý))
c)\(x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\hept{\begin{cases}x=0\left(N\right)\\x=-1\left(L\right)\end{cases}}\)(loại vì x = -1 vì \(x\in N\))
Vậy x = 0
d) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow x+2=x+4\Leftrightarrow x-x=4-2\Leftrightarrow0x=4\)(vô lý)
Vậy \(x=\varnothing\)
Bài 2) ĐK: \(a,b\ne0\)
Bài này có vẻ như là một bài chứng minh, lần sau bạn nên ghi đầy đủ nhé ^^!
a) \(a+5b=\left(a+b\right)+4b\)mà \(\hept{\begin{cases}a+b⋮4\\4a⋮4\end{cases}\Rightarrow\left(a+b\right)+4b⋮4}\)hay \(a+5b⋮4\left(đpcm\right)\)
b) \(a-3b=\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Rightarrow\left(a+b\right)-4b⋮4}\)hay \(a-3b⋮4\left(đpcm\right)\)
c) \(3a-b=3a+3b-4b=3\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(a+b\right)⋮4\\4b⋮4\end{cases}}}\Rightarrow3\left(a+b\right)-4b⋮4\) hay \(3a-b⋮4\left(đpcm\right)\)
Đây chỉ là cách làm của mình, bạn có thể thay đổi cho phù hợp với bạn nhé!
Học tốt ^3^
a) Ta có: x2n \(\ge\)0 \(\forall\)x
y2n \(\ge\)0 \(\forall\)y
=> x2n + y2n \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^{2n}=0\\y^{2n}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy x = y = 0
b) Ta có: (x - 2)2 \(\ge\)0 \(\forall\)x
(y - 3)2 \(\ge\)0 \(\forall\)y
= (x - 2)2 + (y - 3)2 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 và y = 3 (tm)
a) x2n + y2n = 0 ( thêm đk : n \(\in\)N)
Vì n\(\in\)N nên 2n chẵn
=> x2n \(\ge\)0 \(\forall\)x
y2n \(\ge\)0 \(\forall\)y
=> x2n + y2n = 0
<=> x2n = 0 và y2n = 0
=> x2n = 02n và y2n = 02n
=> x = 0 và y = 0
b) (x-2)2 + (y-3)2 = 0
Có : \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\in N\\\left(y-3\right)^2\ge0\forall y\in N\end{cases}\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0}\)
Dấu "=" xảy ra <=>
(x-2)2 = 0 và (y-3)2 = 0
Tự tính tìm đc x = 2 và y = 3