Tìm giá trị lớn nhất của biểu thức: Q= 2x-2-3x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-3x^2+12x-7=-3\left(x^2-4x+4\right)+12-7=-3\left(x-2\right)^2+5\le5\)
\(maxC=5\Leftrightarrow x=2\)
\(C=-3\left(x^2+4x+4\right)+5=-3\left(x+2\right)^2+5\le5\)
Dấu \("="\Leftrightarrow x=-2\)
a. ta có (2x-5)2 >= 0 với mọi x thuộc R
vậy 5 -(2x-5)2 <= 5
dấu = xảy ra khi (2x-5)2=0
vậy 2x-5=0
2x =5
x= 5/2=2,5
Vậy để B lớn nhất thì x=2,5
b. ta có | 2x-4| >= 0 với mọi x thuộc R
| 2x-6| >= 0 với mọi x thuộc R
vậy | 2x-4 |- |2x-6| >= 0
dấu = xảy ra khi |2x-4| và |2x-6| đều bằng 0
=> 2x-4=0 => 2x - 6=0
2x =4 2x =6
x=4/2=2 x= 6/2=3
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(E=-4x^2+x+1\)
\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}\right)+1\)
\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}+\dfrac{1}{64}\right)+1+\dfrac{1}{16}\)
\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\)
mà \(-4\left(x-\dfrac{1}{8}\right)^2\le0,\forall x\)
\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\le\dfrac{17}{16}\)
\(\Rightarrow GTLN\left(E\right)=\dfrac{17}{16}\left(tạix=\dfrac{1}{8}\right)\)
\(F=5x-3x^2+6\)
\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}\right)+6\)
\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}+\dfrac{25}{36}\right)+6+\dfrac{25}{12}\)
\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\)
mà \(-3\left(x-\dfrac{5}{6}\right)^2\le0,\forall x\)
\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\)
\(\Rightarrow GTLN\left(F\right)=\dfrac{97}{12}\left(tạix=\dfrac{5}{6}\right)\)
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
Ta có : \(Q=2x-2-3x^2=-\left(3x^2-2x+2\right)=-[3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{17}{9}]\)
\(=-[3\left(x-\frac{1}{3}\right)^2+\frac{17}{9}]\)
Ta có : \(\left(x-\frac{1}{3}\right)^2\ge0=>-[3\left(x-\frac{1}{3}\right)^2+\frac{17}{9}]\ge0\)
Dấu bằng xảy ra khi \(x-\frac{1}{3}=0=>x=\frac{1}{3}\)
Vậy \(Q_{max}=\frac{17}{9}\)khi \(x=\frac{1}{3}\)