Cho x,y,z > 0 và x+y+z =1 Tìm min A = (x+y+z)/xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(xyz\ge x+y+z+2\ge2+3\sqrt[3]{xyz}\)
\(\Leftrightarrow\frac{x+y+z}{3}\ge\sqrt[3]{xyz}\ge2\)
\(\Leftrightarrow x+y+z\ge6\)
Ta có \(3=x+y+z=x+y+\frac{z}{2}+\frac{z}{2}\ge4\sqrt[4]{x.y.\frac{z^2}{4}}\)
=> \(xyz^2\le\frac{81}{64}\)
\(A=\frac{x+y}{xyz}\ge\frac{2\sqrt{xy}}{xyz}=\frac{2}{\sqrt{xyz^2}}\ge\frac{2}{\sqrt{\frac{81}{64}}}=\frac{16}{9}\)
MinA=16/9 khi \(x=y=\frac{3}{4};z=\frac{3}{2}\)
Ta có:
\(H=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{\frac{1}{x^2}}{x\left(y+z\right)}+\frac{\frac{1}{y^2}}{y\left(z+x\right)}+\frac{\frac{1}{z^2}}{z\left(x+y\right)}\)
\(=\frac{\left(\frac{1}{x}\right)^2}{xy+zx}+\frac{\left(\frac{1}{y}\right)^2}{yz+xy}+\frac{\left(\frac{1}{z}\right)^2}{zx+yz}\)
Áp dụng BĐT Bunyakovsky dạng cộng mẫu ta được:
\(H\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(\frac{xy+yz+zx}{xyz}\right)^2}{2\left(xy+yz+zx\right)}=\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}\)
\(=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{\left(xyz\right)^2}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: x = y = z = 1
Vậy Min(H) = 3/2 khi x = y = z = 1
\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)
\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)
\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)
Dấu = xảy ra khi \(x=y=z=1\)
ý em là bài này hả ?
Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...
bài làm
ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D)
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz
thay x+y+z=3 ta được:
9xyz >=12(xy+yz+zx)-27
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^...
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3
27xyz<=(x+y+z)^3>> xyz<=1
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1
Áp dụng: (a + b)² ≥ 4ab Ta có:
(x + y + z)² ≥ 4(x + y)z hay 1 ≥ 4(x + y)z (*) (Vì x + y + z = 1)
=> (x + y)/xyz ≥ 4(x + y)²z/xyz ( Nhân hai vế (*) với (x + y)/xyz)
=> (x + y)/xyz ≥ 4.4xyz/xyz = 16 (vì (x + y)² ≥ 4xy)
Vậy min A = 16 <=> x = y; x + y = z và x + y + z = 1
=> x = y = 1/4; z = 1/2
bn Phùng Gia Bảo nhầm 1 chỗ r nhe
C1: \(A=\frac{x+y+z}{xyz}=\frac{1}{\left(\sqrt[3]{xyz}\right)^3}\ge\frac{1}{\left(\frac{x+y+z}{3}\right)^3}=\frac{1}{\frac{1}{27}}=27\)
C2: \(A=\frac{x+y+z}{xyz}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\ge\frac{9}{\frac{\left(x+y+z\right)^2}{3}}=\frac{9}{\frac{1}{3}}=27\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)