K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

1;2;3

5 tháng 12 2017

Ta có:

\(xyz\ge x+y+z+2\ge2+3\sqrt[3]{xyz}\)

\(\Leftrightarrow\frac{x+y+z}{3}\ge\sqrt[3]{xyz}\ge2\)

\(\Leftrightarrow x+y+z\ge6\)

23 tháng 3 2017

Do x + y + z = 4  suy ra  z = 4 - y -x

Ta có x + y >= 4xy -x^2y - yx^2

4 tháng 10 2017

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)

4 tháng 10 2017

Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)

Áp dụng bất đẳng thức Canchy Schwarz dạng Engel : 

\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)

Dấu " = " xảy ra khi x=y=z=1.

Đặt \(A=\left(x+y\right)\left(x+z\right)=x^2+xy+xz+yz.\)

\(=x\left(x+y+z\right)+yz\)

Áp dụng bđt AM-GM ta có

\(A\ge2\sqrt{xyz\left(x+y+z\right)}=2\sqrt{1}=2\)(đpcm)

Gọi số xe mà đoàn có là : x ( xe )   ( \(x\inℕ^∗\))

     Thực tế có : x + 3 ( xe )

      =>  Lúc đầu mỗi xe chở được \(\frac{480}{x}\)( Tấn )

           Thực tế mỗi xe chở được  \(\frac{480}{x+3}\)( Tấn )

     Theo đề bài ta có :

                         \(\frac{480}{x}-\frac{480}{x+3}=8\)\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{8}{480}\)\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{8}{480}\) 

              \(\Leftrightarrow\frac{3}{x^2+3x}=\frac{1}{60}\Leftrightarrow x^2+3x=180\)   \(\Leftrightarrow x^2+3x-180=0\)

              \(\Leftrightarrow\left(x-12\right)\left(x+15\right)=0\)

             \(\orbr{\begin{cases}x=12\left(Tm\right)\\x=-15\left(kTm\right)\end{cases}}\)

Vậy lúc đầu đoàn có 12 xe

           

     

4 tháng 10 2017

Áp dụng bđt Cauchy Schwarz dạng Engel:

P=\(\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{3^2}{4.3}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1

14 tháng 3 2018

Áp dụng bất đẳng thức AM - GM t có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge4\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)(1)

Tương tự t có: \(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)(2)

                       \(\frac{x^2}{x+y}+\frac{x+y}{4}\ge z\)(3)

Từ (1); (2); (3) t có: 

\(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{z+x}+\frac{x+z}{4}\right)+\left(\frac{x^2}{x+y}+\frac{x+y}{4}\right)\ge x+y+z\)

Từ x + y + z \(\ge\) 4, t có:

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{x^2}{x+y}\ge\frac{x+y+z}{4}\)

Vậy giá trị nhỏ nhất của P là 1, đạt được khi \(x=y=z=\frac{2}{3}\)

14 tháng 3 2018

áp dụng bđt Bunyakovsky dạng phân thức ta có: P >=(x+y+z)^2/(x+y+z)=(x+y+z)/2=2

đẳng thức xảy ra <=> x=y=z=4/3

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath