K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

a) C = 2 + 22 + 23 + ... + 2100

2C   = 22 + 23 + 24 + ... + 2101

Lấy 2C trừ C theo vế ta có : 

2C - C = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)

   C      = 2101 - 1

b) D = 1 + 3 + 32 + ... + 320

  3D  = 3 + 32 + 33 + ... + 321

Lấy 3D trừ D theo vế : 

3D - D = (3 + 32 + 33 + ... + 321) - (1 + 3 + 32 + ... + 320)

    2D   = 321 - 1

      D   = (321 - 1) : 2

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

27 tháng 10 2024

1990.1990 -1992.1988

 

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

2 tháng 11 2023

a,     A = 1 + 3 + 32 + 33 + ... + 32000

    3.A =  3 + 32 + 33+ 33+... + 32001

    3A - A = 3 + 32 + 33 + ... + 32001 - (1 + 3 + 32 + 33 + ... + 32000)

     2A    = 3 + 32 + 33 + ... + 32001 -  1 - 3 - 32 - 33 - ... - 32000

     2A   = 32001 - 1 

       A   = \(\dfrac{3^{2001}-1}{2}\)

       

22 tháng 12 2023

a) \(3.5^2+15.2^2-26\div2\)

= 3.25 + 15.4 - 13

= 75 + 60 - 13

= 135 - 13

= 122

b) \(5^3.2-100\div4+2^3.5\)

= 125.2 - 25 + 8.5

= 250 - 25 + 40

= 225 + 40

= 265

c)\(6^2\div9+50.2-3^3.33\)

= 36 : 9 + 100 - 9.33

= 4 + 100 - 297

= 104 - 297

= -193

d)\(3^2.5+2^3.10-81\div3\)

= 9.5 + 8.10 - 27

= 45 + 80 - 27

= 125 - 27

= 98

e) \(5^{13}\div5^{10}-25.2^2\)

= 53 - 25.4

= 125 - 100

= 25

f) \(20\div2^2+5^9\div5^8\)

= 20 : 4 + 5

= 5 + 5

= 10

16 tháng 8 2023

Bài 1:

13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)

13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)

13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp

 

16 tháng 8 2023

Bài 2:

1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)

100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)

1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)

107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)

11 + 112 + 113 = \(\overline{..1}\)\(\overline{..1}\)\(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)

 

a: Ta có: \(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\cdot\left(2+2^3+...+2^{99}\right)⋮3\)

b: Ta có: \(B=4+4^2+4^3+...+4^{2022}\)

\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2021}\left(1+4\right)\)

\(=5\cdot\left(4+4^3+...+4^{2021}\right)⋮5\)

21 tháng 8 2021

Dạ em cảm ơn rất nhiều

6 tháng 1 2022

b

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$