Chứng minh rằng :
x^2 + 4y^2 + z^2 - 2x - 6z + 8y +15 > 0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\) mũ bao nhiêu thì cô và các bạn mới giúp được chứ em?
7) Chứng minh rằng: x^2 +4y^2 + z^2- 2x -6z +8y + 15 > 0 với mọi x, y, z.
Tham khảo bài làm của mình : Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 8 - Học toán với OnlineMath
Bài làm:
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)
=> đpcm
a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)
\(=-\left(2x+1\right)^2-1\)
Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)
\(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)
\(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )
b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)
\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )
\(C=x^2-6z+4y^2+8y+z^2-2x+15\)
=>\(C=\left(x^2-2x+1\right)+\left(z^2-6z+9\right)+\left(4y^2+8y+4\right)+1\) (là những hằng đẳng thức bạn ạ)
=>\(C=\left(x-1\right)^2+\left(z-3\right)^2+\left(2y+2\right)^2+1\)
Vì \(\left(x-1\right)^2\) \(\ge\) 0 (Với mọi x)
\(\left(z-3\right)^2\ge0\) (Với mọi x)
\(\left(2y+2\right)^2\ge0\) (Với mọi x)
=>\(\left(x-1\right)^2+\left(z-3\right)^2+\left(2y+2\right)^2+1\ge1\) (Với mọi x)
Vậy C>0 (Với mọi x) (đpcm)
Mình chắc chắn 100% đó **** mình na !!!
làm tắt ko hiểu thì hỏi
a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)
b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
\(x^2+4y^2+z^2-2x-6z+8y+15=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)
thấy: \(\left(x-1\right)^2\ge0;\left(2y+2\right)^2\ge0;\left(z-3\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\) (đpcm)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= (x2 - 2x + 1) + (4y2 + 8y + 4) + (z2 - 6z + 9) + 1
= (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1
Thấy: (x - 1)2 > 0
4(y + 1)2 > 0
(z - 3)2 > 0
<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0
<=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 > 0 + 1 = 1 > 0
=> đpcm