Tìm x, y thuộc n, biết
1. ( 3x + 1 ) chia hết ( 2x - 1 )
2. ( x - 2 ) ( 2y + 1 ) = 17
3. xy + x + 2y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
a) Ta có :
\(3x+1⋮2x-1\)
Mà : \(2x-1⋮2x-1\)
\(\Rightarrow\left\{{}\begin{matrix}6x+2⋮2x-1\\6x-3⋮2x-1\end{matrix}\right.\)
\(\Rightarrow5⋮2x-1\)
Vì \(x\in N\Rightarrow2x-1\in N;2x-1\inƯ\left(5\right)\)
Ta có bảng :
\(2x-1\) | \(1\) | \(5\) |
\(x\) | \(1\) | \(3\) |
\(Đk\) \(x\in N\) | \(TM\) | \(TM\) |
Vậy \(x\in\left\{1;3\right\}\) là giá trị cần tìm
b) Ta có :
\(x,y\in N\)
\(\left(x-2\right)\left(2y+1\right)=17\)
\(\Rightarrow x-2\in Z;2y+1\in N,x-2;2y+1\inƯ\left(17\right)\)
Sau đó bn lập bảng, so sánh điều kiện r kết luận thoy. Bước này bn tự làm nhs!! mk ngại
c) \(xy+x+2y=5\)
\(\left(xy+x\right)+2y+2=5+2\)
\(x\left(y+1\right)+2\left(y+1\right)=7\)
\(\left(y+1\right)\left(x+2\right)=7\)
Vì \(x,y\in N\Rightarrow y+1;x+2\in N;y+1;x+2\inƯ\left(7\right)\)
Ta có bảng :
\(x+2\) | \(1\) | \(7\) | |
\(y+1\) | \(7\) | \(1\) | |
\(x\) | \(-1\) | \(6\) | |
\(y\) | \(5\) | \(0\) | |
\(Đk\) \(x,y\in N\) | loại | TM |
Vậy....................
c, \(3x+1⋮2x-1\)
\(\Rightarrow6x+2⋮2x-1\)
\(\Rightarrow6x-3+5⋮2x-1\)
\(\Rightarrow3\left(2x-1\right)+5⋮2x-1\)
\(\Rightarrow5⋮2x-1\)
Do \(x\in N\)
\(\Rightarrow2x-1\in\left\{1;5\right\}\)
\(\Rightarrow x\in\left\{1;3\right\}\)
Vậy...
d, \(\left(x-2\right)\left(2y+1\right)=17\)
Ta có bảng sau: ( 2y + 1 là số lẻ; \(x,y\in N\) )
\(x-2\) | 1 | 17 |
\(2y+1\) | 17 | 1 |
\(x\) | 3 | 19 |
\(y\) | 8 | 0 |
Vậy cặp số \(\left(x;y\right)\) là \(\left(3;8\right);\left(19;0\right)\)
e, \(xy+x+2y=5\)
\(\Rightarrow x\left(y+1\right)+2y+2=7\)
\(\Rightarrow x\left(y+1\right)+2\left(y+1\right)=7\)
\(\Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta có bảng sau: \(\left(x;y\in N\right)\)
\(x+2\) | 1 | 7 |
\(y+1\) | 7 | 1 |
\(x\) | -1 | 5 |
y | 6 | 0 |
Vậy cặp số \(\left(x;y\right)\) là \(\left(5;0\right)\)
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
1. Đặt A = 3x + 1
=> 2A = 6x + 2 = 3(2x - 1) + 5
Để A \(⋮\)2x - 1 <=> 2A \(⋮\)2x - 1
<=> 3(2x - 1) + 5 \(⋮\) 2x - 1
<=> 5 \(⋮\)2x - 1 (vì 3(2x - 1) \(⋮\)2x - 1)
<=> 2x - 1 \(\in\)Ư(5) = {1; 5}
Với: +) 2x - 1 = 1 => 2x = 2 => x = 1
+) 2x - 1 = 5 => 2x = 6 => x = 3
Vậy ...
Sao b chỉ trả lời có 1 câu thế