K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Có 111...11222...22=111..11.10100+2.111....111

Bây giờ ta có chung thừa số 111....11 nên ta đặt chúng ra làm thừa số chung và bằng

111.....11.[10100+2]=111....11.[100...00+2]=111...11.[100..02]=111....11.[3.33..334]=333...33.333...34

       Vậy 111...11222...22 là tích của 2 stn liên tiếp 

1 tháng 1 2020

Sắp sửa sang 2020 rồi .Mình chúc mọi người khỏe mạnh nha.

20 tháng 12 2016

Ta có : \(A=11...122...2=11...100...0+22...2\) ( 100 c/s 1 ; 100 c/s 0 ; 100 c/s 2 )

\(=11...1.\left(100...0+2\right)\) ( 100 c/s 1 ; 100 c/s 0 )

\(=11...1.\left(3.33...34\right)\) ( 100 c/s 1 ; 99 c/s 3 )

\(=33...3.33...34\) ( 100 c/s 3 ; 99 c/s 3 )

Vậy A là tích của hai STN liên tiếp

20 tháng 12 2016

thanks

23 tháng 4 2018

ko có bạn nào làm dc à

thất vọng quá

26 tháng 3 2019

111.......11222....222\(=\)111.....1 \(.10^n+2222.....2=11111....1.10^n+2\left(1111.....1\right)\)(n chữ số 1)

\(=111......1\left(10^n+2\right)\)(n chữ số 1)

Nhận xét:\(10^n=999.....9+1\)(n chữ số 9)

\(=9999.....9+1\)

đặt a\(=111....1\Rightarrow111....11222......222=a\left(9a+1+2\right)=a\left(9a+3\right)=3a\left(3a+1\right)\)

vì 3a và 3a+1 là 2 số tự nhiên liên tiếp \(\Rightarrow\)111...11222..222 là tích 2 tự nhiên liên tiếp

mình chỉ biết làm 1 cách thôi

                                         

13 tháng 10 2015

111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)

= 111...1.(10n + 2)  (n chữ số 1)

Nhận xét: 10n = 999...9 + 1 (n chữ số 9)

= 9. 111...1 + 1

đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)

hai số 3a ; 3a + 1 là số tự nhiên liên tiếp

=> đpcm

14 tháng 2 2016

đcpm nghĩa là gì vậy

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

6 tháng 8 2023

 vcvvxcv

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
Đặt \(\underbrace{111....1}_{100}=a\Rightarrow 9a+1=1\underbrace{000...0}_{100}\)

Khi đó:
\(\underbrace{1111....1}_{100}\underbrace{222....2}=\underbrace{111...1}_{100}\times 1\underbrace{00...0}_{100}+\underbrace{222....2}_{100}\)

\(a(9a+1)+2a=9a^2+3a=3a(3a+1)\) là tích của 2 số
 tự nhiên liên tiếp $3a, 3a+1$

Ta có đpcm.

14 tháng 2 2016

Đặt  \(P=111...111222...222\), ta có:

\(P=111...111222...222\)  (có \(100\)  số  \(1\)  và  \(100\)  số  \(2\) )

     \(=111...111000...000+222...222\)  (có   \(100\)  số  \(1\),  \(100\)  số  \(0\)  và  \(100\)  số  \(2\) )

     \(=111...111.10^{100}+2.111...111\)  

\(P=111...111\left(10^{100}+2\right)\)  

Đặt  \(111...111=k\), \(\Rightarrow\)  \(9k=999...999\)  (có  \(100\)  số  \(9\) ) nên  \(9k+1=1000...000=10^{100}\) 

Do đó,  \(P=k\left(9k+1+2\right)=k\left(9k+3\right)=3k\left(3k+1\right)\)

Mà  \(3k\)  và  \(3k+1\)  lại là  \(2\)  số tự nhiên liên tiếp nên suy ra điều phải chứng minh.