K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Ta có \(-1\le\sin2x\le1\)

\(\Leftrightarrow1\le-\sin2x\le-1\\ \Leftrightarrow0\le1-\sin2x\le2\\ \Leftrightarrow0\le y\le2\)

\(\Leftrightarrow y_{max}=2\\ y_{min}=0\)

NV
20 tháng 9 2021

\(y=2\left(\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x\right)=2sin\left(2x+\dfrac{\pi}{3}\right)\)

\(-1\le sin\left(2x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)

\(y_{min}=-2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=-1\Rightarrow x=-\dfrac{5\pi}{12}+k\pi\)

\(y_{max}=2\) khi \(sin\left(2x+\dfrac{\pi}{3}\right)=1\Rightarrow x=\dfrac{\pi}{12}+k\pi\)

4 tháng 8 2021

21.
a) `2sin(x-30^@)-1=0`
`<=>sin(x-30^@)=1/2`
`<=> sin(x-30^@)=sin30^@`
`<=>[(x-30^@=30^@+k360^@),(x-30^@=180^@-30^@+k360^@):}`
`<=> [(x=60^@+k360^@),(x=180^@+k360^@):}`
b) `5sin^2x+3cosx+3=0`
`<=>5(1-cos^2x)+3cosx+3=0`
`<=>-5cos^2x+3cosx+8=0`
`<=>(cosx+1)(cosx=8/5)=0`
`<=>[(cosx=-1),(cosx=8/5\ (VN)):}`
`<=>x=180^@+k360^@`
22.
`-1<=sin2x<=1`
`<=>2<=3+sin2x<=4`
`=> y_(min)=2 ; y_(max)=4`

15 tháng 9 2021
a) y=3-cos^2x b)4-|sin 2x|-5 Câu hỏi này mới đúng?
NM
2 tháng 9 2021

ta có \(x\in\left[-\frac{\pi}{4};0\right]\Rightarrow2x\in\left[-\frac{\pi}{2},0\right]\Rightarrow sin2x\in\left[-1,0\right]\)

Vậy \(\hept{\begin{cases}GTNN=-1\\GTLN=0\end{cases}}\)

10 tháng 9 2021

Có: y=sin^4x−cos^4x
        = (sin^2x−cos^2x)(sin^2x+cos^2x)
        = −cos2x
=> −1≤y≤1
=> min y=−1⇔cos2x=1⇔x=kπ
     max y=1⇔cos2x=−1⇔x=π2+kπ
Vậy min y = -1; max y=1

NV
10 tháng 9 2021

\(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+sin2x\)

\(=1-\dfrac{1}{2}sin^22x+sin2x\)

Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t+1\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{1}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\)

\(\Rightarrow y_{min}=-\dfrac{1}{2}\) khi \(sin2x=-1\)

\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\)