tìm x:
72 chia hết cho x, 60 chia hết cho x và x>6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>X thuộc ƯC(72;60)
Ta có:
72=23.32
60=22.3.5
=>ƯCLN(72;60)=22.3=12
=>ƯC(72;60)=Ư(12)={1;2;3;4;6;12}
Mà x>6 =>x=12
a, Ta có : 24 chia hết cho (x-1)
\(\Rightarrow\)\(24⋮x-1\)
\(\Rightarrow\)\(x-1\inƯ\left(24\right)\)
\(\Rightarrow\)\(x-1\in\left\{1;2;3;4;6;8;12;24\right\}\)
\(\Rightarrow\)\(x\in\left\{2;3;4;5;7;9;13;25\right\}\)
Vậy \(x\in\left\{2;3;4;5;7;9;13;25\right\}\)
Vì \(48;72;60⋮x\)
\(\Rightarrow x\inƯC\left(48;72;60\right)\left(4\le x\le12\right)\)
Ta có :
48 = 24 . 3
72 = 22 . 13
60 = 22 . 3 . 5
\(\RightarrowƯC\left(48;72;60\right)=2^2=4\)
Vậy \(x=4\)
Mình sửa lại chỗ \(4< x< 12\) thành \(4\le x\le12\) nha
Vì 48 chia hết cho x,72 chia hết cho x, 60 chia hết cho x nên :
=> x \(\in\) ƯC( 48;72;60 )
48 = 24. 3
72 = 23 . 32
60 = 22 . 3 . 5
ƯCLN ( 48,72,60) = 22 . 3 = 12
ƯC ( 48,72,60 ) = Ư( 12 ) = { 1;2;3;4;6;12 }
=> x \(\in\) { 1; 2; 3; 4; 6; 12 }
Vì 4<x<12 nên :
x \(\in\) { 6 ; 12 }
Bài 1
a) x ⋮ 6 ⇒ x ∈ B(6) = {0; 6; 12; 18; 24; ...}
Mà 10 < x < 18 nên x = 12
b) 24 ⋮ x ⇒ x ∈ Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Mà x > 4
⇒ x ∈ {6; 8; 12; 24}
c) x ⋮ 10 ⇒ x ∈ B(10) = {0; 10; 20; 30; 40;...} (1)
Lại có 45 ⋮ x ⇒ x ∈ Ư(45) = {1; 3; 5; 9; 15; 45} (2)
Từ (1) và (2) ⇒ không tìm được x thỏa mãn đề bài
Bài 2
a) *) (60 + x) ⋮ 5
Mà 60 ⋮ 5
⇒ x ⋮ 5
⇒ x = 5k (k )
*) (72 - x) ⋮ 5
72 chia 5 dư 2
⇒ x chia 5 dư 3
⇒ x = 5k + 3 (k ∈ ℕ)
b) Gọi a, a + 1, a + 2 là ba số tự nhiên liên tiếp (a ∈ ℕ)
Ta có:
a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) ⋮ 3
Vậy tổng ba số tự nhiên liên tiếp chia hết cho 3
a; \(x\) ⋮ 5; \(x\) ⋮ 6; \(x\) ⋮ 10;
\(x\) \(\in\) BC(5; 6; 10)
5 = 5; 6 = 2.3; 10 = 2.5
BCNN(5;6;10) = 2.3.5 = 30
\(x\in\) B(30) = {0; 30; 60; 90; 120; 150; 180;..}
Vì 0 < \(x\) < 140 nên \(x\) \(\in\) {0; 30; 60; 120}
Vậy \(x\) \(\in\) {0; 30; 60; 120}
b; \(x\) \(⋮\) 30; \(x\) ⋮ 45; \(x\) < 500
\(x\) \(⋮\) 30; \(x\) ⋮ 45 ⇒ \(x\) \(\in\) BC (30; 45)
30 = 2.3.5; 45 = 32.5; BCNN(30 ; 45) = 2.32.5 = 90
\(x\) \(\in\) B(90) = {0; 90; 180; 270; 360; 450; 540;...}
Vì 45 < \(x\) < 500 nên \(x\) \(\in\) {90; 180; 270; 360; 450}
Vậy \(x\) \(\in\) {90; 180; 270; 360; 450;...}
a) => x\(\in\)BC(5,6,10)
Ta có: 5=5
6=2.3
10=2.5
BCNN(5,6,10)=2.3.5=30
=> BC(5,6,10)={0,30,60,90,120,150,180,...}
Vì 0<x<140
Nên:x\(\in\){30,60,90,120}
b)=> x\(\in\)BC(30,45)
30=2.3.5
45=32.5
BCNN(30,45)=2.32.5=90
=> BC(30,45)={0,90,180,270,360,450,540,...}
Vì x<500 nên x\(\in\){0,90,270,360,450}
c) => x\(\in\)ƯC(40,60)
40=23.5
60=22.3.5
ƯCLN(40,60)=22.5=20
=>ƯC(40,60)={1,2,4,5,10,20}
Vì x>20 nên x\(\in\)\(\varnothing\)
Ta có:
\(\hept{\begin{cases}72⋮x\\60⋮x\end{cases}\Rightarrow\hept{\begin{cases}x\inƯ\left(72\right)\\x\inƯ\left(60\right)\end{cases}\Rightarrow}x\inƯC\left(72,60\right)}\)
Ta có:ƯCLN(70;60)=12
=>ƯC(72;60)=Ư(12)={\(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\)}
Vì x>6 nên x=12
72 / 60 = 1.2
1.2*10 = 12
=> x=12 (vi: 72 / 12 = 6; 60 / 12 = 5)