K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

x- 2x = 24

=> x2 - 2x - 24 = 0

Ta có:

x2 - 2x - 24 = x- 2x - 1 + 25 = (x - 1)2 - 25 = 0

=> (x - 1)2 = 25

=> x - 1 = 5 => x = 6

hoặc x - 1 = -5 => x = -4

Vậy x = 6 hoặc x = -4.

1: =>\(5^{x-2}-9=2^4-\left(6^2-6^2\right)\)

=>\(5^{x-2}=16+9=25\)

=>x-2=2

=>x=4

2: \(\Leftrightarrow3^x+16=19^6:19^5-3=19-3=16\)

=>3^x=0

=>x=0

3: \(\Leftrightarrow2^x+2^x\cdot16=272\)

=>2^x*17=272

=>2^x=16

=>x=4

4: \(\Leftrightarrow2^{x-1}+3=24-\left(4^2-2^2+1\right)=24-\left(16-4+1\right)\)

=>\(2^{x-1}+3=24-16+4-1=8+4-1=12-1=11\)

=>2^x-1=8

=>x-1=3

=>x=4

20 tháng 10 2021

1) \(-6x^4+4x^3-2x^2\)

2) \(=x^2+4x-21-x^2-4x+5=-16\)

3) \(=6x^2-4x-x^2-4x-4=5x^2-8x-4\)

4) \(=2x^3-4x^2-8x-3x^2+6x+12=2x^3-7x^2-2x+12\)

20 tháng 10 2021

giúp mình với

 

 

14 tháng 7 2016

Theo đầu bài ta có:
\(\left(2x-7\right)^{24}+\left(7-2x\right)^{24}=2\)
\(\Rightarrow\left(2x-7\right)^{24}+\left[-\left(2x-7\right)\right]^{24}=2\)
\(\Rightarrow\left(2x-7\right)^{24}+\left(2x-7\right)^{24}=2\)
\(\Rightarrow\left(2x-7\right)^{24}\cdot2=2\)
\(\Rightarrow\left(2x-7\right)^{24}=1\)
\(\Rightarrow\orbr{\begin{cases}2x-7=1\\2x-7=-1\end{cases}\Rightarrow\orbr{\begin{cases}2x=8\\2x=6\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)

14 tháng 7 2016

- Nếu 2x - 7 < -1 hoặc 2x - 7 > 1 thì (2x - 7)2 > 2 do đó không thể xảy ra đẳng thức

- Nếu 2x - 7 = 0 thì (2x - 7)24 + (2x - 7)24 = 0 (loại)

- Nếu 2x - 7 = + 1 thì (2x - 7)24 + (2x - 7)24 = 1 (thỏa mãn)

Vậy 2x - 7 = + 1 \(\Leftrightarrow\) x = 4 hoặc x = 3

26 tháng 12 2021

\(\Leftrightarrow\left(x^2-2x-8\right)=0\)

=>(x-4)(x+2)=0

=>x=4 hoặc x=-2

a: \(=\dfrac{x\left(x^2+x-2\right)}{x+2}=\dfrac{x\left(x+2\right)\left(x-1\right)}{x+2}=x^2-x\)

b: \(=\dfrac{x^3-3x^2+2x+24}{x+2}=\dfrac{x^3+2x^2-5x^2-10x+12x+24}{x+2}=x^2-5x+12\)

26 tháng 10 2021

dmm

26 tháng 10 2021

a: \(\left(x+1\right)^3+\left(x-2\right)^3=2x^3+2\left(2x-1\right)^2-9\)

\(\Leftrightarrow x^3+3x^2+3x+1+x^3-6x^2+12x-8=2x^3+2\left(4x^2-4x+1\right)-9\)

\(\Leftrightarrow2x^3-3x^2+15x-7=2x^3+8x^2-8x-7\)

\(\Leftrightarrow-11x^2+23x=0\)

\(\Leftrightarrow x\left(-11x+23\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{11}\end{matrix}\right.\)

3 tháng 8 2023

\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

3 tháng 8 2023

\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

a: Ta có: \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)

c: Ta có: \(\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-5\right)\cdot\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

b. 

PT $\Leftrightarrow (5x^2-2x+10)^2-(3x^2+10x-8)^2=0$

$\Leftrightarrow (5x^2-2x+10-3x^2-10x+8)(5x^2-2x+10+3x^2+10x-8)=0$

$\Leftrightarrow (2x^2-12x+18)(8x^2+8x+2)=0$

$\Leftrightarrow (x^2-6x+9)(4x^2+4x+1)=0$

$\Leftrightarrow (x-3)^2(2x+1)^2=0$

$\Leftrightarrow (x-3)(2x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $2x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-\frac{1}{2}$

d.

$x^2-2x=24$

$\Leftrightarrow x^2-2x-24=0$

$\Leftrightarrow (x+4)(x-6)=0$
$\Leftrightarrow x+4=0$ hoặc $x-6=0$

$\Leftrightarrow x=-4$ hoặc $x=6$