Tìm GTLN hoặc GTNN của các biểu thức sau
a.A=5+√x-3
b.B=√x2+4x +7
c.C=x-2√x+3
d.D=√x-x
e.x-3/√
giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-x+3=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}+3=\left(x-2\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(A\right)=\dfrac{11}{4}\)
\(B=x^2-4x+1=x^2-4x+4-4+1=\left(x-2\right)^2-3\ge-3\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(B\right)=-3\)
Câu C bạn xem lại đề
\(D=3-4x-x^2=3+4-4-4x-x^2=7-\left(x^2+4x+4\right)=7-\left(x+2\right)^2\le7\left(-\left(x+2\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=7\)
\(A=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\in R\)
Vậy GTNN của A là 11/4 khi x=1/2
a: Để A nguyên thì \(2x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;1;5;-2\right\}\)
a/ Ta có :
\(\left|x-5\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-5\right|+3\ge3\forall x\)
\(\Leftrightarrow A\ge3\)
Dấu "=" xảy ra khi : \(\left|x-5\right|=0\)
\(\Leftrightarrow x=5\)
Vậy \(A_{Min}=3\Leftrightarrow x=5\)
b,c tương tự
\(...=A=x^3-3x^2+3x-1+1013\)
\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)
\(...B=x^3-6x^2+12x-8-100\)
\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)
\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)
\(...D=x^3+9x^2+27x+9+2018\)
\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)
a) \(A=x^3-3x^2+3x+1012\)
\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)
\(A=\left(x-1\right)^3+1013\)
Thay x=11 vào A ta có:
\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)
b) \(B=x^3-6x^2+12x-108\)
\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)
\(B=\left(x-2\right)^3-100\)
Thay x=12 vào B ta có:
\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)
c) \(C=x^3+6x^2y+12xy^2+8y^3\)
\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)
\(C=\left(x+2y\right)^3\)
Thay x=-2y vào C ta được:
\(C=\left(-2y+2y\right)^3=0^3=0\)
d) \(D=x^3+9x^2+27x+2027\)
\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)
\(D=\left(x+3\right)^3+2000\)
Thay x=-23 vào D ta có:
\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)
a A=4x-x^2+3
=(x-2)^2-1
MIN A= -1 khi (x-2)^2=0
x-2=0
x=2
B=x-x^2
B=-x^2+x
-B=x^2-x
-B=(x-1/2)^2-1/4
B=-(x-1/2)^2+1/4
MAX B=1/4 khi -(x-1/2)^2=0
x-1/2=0
x=1/2
N=2x-2x^2-5
-N=2x^2-2x+5
-N=2(x^2-x+2)+1
-N=2{(x-1/2)^2+7/4}+1
-N=2(x-1/2)^2+7/2+1
-N=2(x-1/2)^2+9/2
N=-2(x-1/2)^2-9/2
MAX N=-9/2 khi -2(x-1/2)^2=0
x-1/2=0
x=1/2
bài 1
a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)
Dấu "=" xảy ra khi x=1
Vậy Amin=-1 khi x=1
b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)
Dấu "=" xảy ra khi x=1
Vậy Bmin=-2 khi x=1
bài 2:
a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
dấu "=" xảy ra khi x=-1/2
Vậy Amax=6/5 khi x=-1/2
b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu '=" xảy ra khi x=-2/3
Vậy Bmax=15/41 khi x=-2/3
a)để A=3/x-1 A thuộc Z
=>3 chia hết x-1
=>x-1\(\in\){1,-1,3,-3}
=>x\(\in\){2,0,4,-2}
b)để B=x-2/x+3 thuộc Z
=>x-2 chia hết x+3
<=>(x+3)-5 chia hết x+3
=>5 chia hết x+3
=>x+3\(\in\){1,-1,5,-5}
=>x\(\in\){-2,-4,2,-8}
c)để C=2x+1/x-3 thuộc Z
=>2x+1 chia hết x-3
<=>[2(x-3)+7] chia hết x-3
=>7 chia hết x-3
=>x-3\(\in\){1,-1,7,-7}
=>x\(\in\){4,2,10,-4}
d)để D=x^2-1/x+1 thuộc Z
=>x^2-1 chia hết x+1
tự làm tiếp